已知函數(shù),,其中的導(dǎo)函數(shù).

(1)對滿足的一切的值,都有,求實數(shù)的取值范圍;

(2)設(shè),當(dāng)實數(shù)在什么范圍內(nèi)變化時,函數(shù)的圖象與直線只有一個公共點.

 

【答案】

(1)時,對滿足的一切的值,都有

(2)的取值范圍是

【解析】本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運用。根據(jù)已知條件得到函數(shù)的g(x),然后運用導(dǎo)數(shù)的思想得到函數(shù)在給定區(qū)間的最值,利用最值得到參數(shù)的取值范圍。

同時利用函數(shù)f(x)中參數(shù)m的值,進行分類討論,可知函數(shù)的圖像與圖像的交點問題,如果只有一個,則參數(shù)m的范圍即可解得

解:(1)由題意,得,-----2分

設(shè),.對中任意值,恒有,即    -------6分

 解得. 故時,對滿足的一切的值,都有;

(2),

①當(dāng)時,的圖象與直線只有一個公共點;-----8分

②當(dāng)時,列表:

極大值

最小值

,

的值域是,且在上單調(diào)遞增,

當(dāng)時,函數(shù)的圖象與直線只有一個公共點.-------11分

當(dāng)時,恒有,

由題意,只要,即有函數(shù)的圖象與直線只有一個公共點

,   ------14分

解得.綜上,的取值范圍是.             

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013安徽省高二下學(xué)期第二次5月質(zhì)量檢測理科數(shù)學(xué)卷(解析版) 題型:解答題

已知函數(shù),其中的導(dǎo)函數(shù).

(1)對滿足的一切的值,都有,求實數(shù)的取值范圍;

(2)設(shè),當(dāng)實數(shù)在什么范圍內(nèi)變化時,函數(shù)的圖象與直線只有一個公共點.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆江蘇省揚州市高二下期中數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分16分)

已知函數(shù),,其中的導(dǎo)函數(shù).

(1)對滿足的一切的值,都有,求實數(shù)的取值范圍;

(2)設(shè),當(dāng)實數(shù)在什么范圍內(nèi)變化時,函數(shù)的圖象與直線只有一個公共點.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆江蘇省高二下學(xué)期期中考試理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),,其中的導(dǎo)函數(shù).

(1)對滿足的一切的值,都有,求實數(shù)的取值范圍;

(2)設(shè),當(dāng)實數(shù)在什么范圍內(nèi)變化時,函數(shù)的圖象與直線只有一個公共點.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年宜昌一中10月月考文)(12分)

已知函數(shù),,其中的導(dǎo)數(shù).

(1)對滿足的一切的值,都有,求實數(shù)的取值范圍;

(2)設(shè)直線是函數(shù)圖象的一條切線,求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案