【題目】已知命題p:方程 + =1表示焦點在y軸上的橢圓,命題q:雙曲線 ﹣ =1的離心率e∈( , ),若命題p、q中有且只有一個為真命題,則實數(shù)m的取值范圍是
【答案】0<m≤ ,或3≤m<5
【解析】解:若命題p:方程 + =1表示焦點在y軸上的橢圓為真命題; 則9﹣m>2m>0,
解得0<m<3,
則命題p為假命題時,m≤0,或m≥3,
若命題q:雙曲線 ﹣ =1的離心率e∈( , )為真命題;
則 ∈( , ),
即 ∈( ,2),
即 <m<5,
則命題q為假命題時,m≤ ,或m≥5,
∵命題p、q中有且只有一個為真命題,
當(dāng)p真q假時,0<m≤ ,
當(dāng)p假q真時,3≤m<5,
綜上所述,實數(shù)m的取值范圍是:0<m≤ ,或3≤m<5.
所以答案是:0<m≤ ,或3≤m<5
【考點精析】根據(jù)題目的已知條件,利用復(fù)合命題的真假和命題的真假判斷與應(yīng)用的相關(guān)知識可以得到問題的答案,需要掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時為真,其他情況時為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時為假,其他情況時為真;兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若(a+b+c)(b+c﹣a)=3ab,且sinA=2sinBcosC,那么△ABC是( )
A.直角三角形
B.等邊三角形
C.等腰三角形
D.等腰直角三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:實數(shù)x滿足x2﹣4ax+3a2<0,其中a>0,命題q:實數(shù)x滿足 .
(1)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(2)若p是q的充分不必要條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(2x+1),g(x)=loga(1﹣2x)(a>0且a≠1)
(1)求函數(shù)F(x)=f(x)﹣g(x)的定義域;
(2)判斷F(x)=f(x)﹣g(x)的奇偶性,并說明理由;
(3)確定x為何值時,有f(x)﹣g(x)>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在斜三棱柱ABC﹣A1B1C1中,∠BAC=90°,BC1⊥AC,則C1在面ABC上的射影H必在( )
A.直線AB上
B.直線BC上
C.直線CA上
D.△ABC內(nèi)部
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知ACDE是直角梯形,且ED∥AC,平面ACDE⊥平面ABC,∠BAC=∠ACD=90°,AB=AC=AE=2, ,P是BC的中點. (Ⅰ)求證:DP∥平面EAB;
(Ⅱ)求平面EBD與平面ABC所成銳二面角大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圍建一個面積為360m2的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2m的進(jìn)出口,已知舊墻的維修費用為45元/m,新墻的造價為180元/m,設(shè)利用的舊墻的長度為x(單位:m),修建此矩形場地圍墻的總費用為y(單位:元). (Ⅰ)將y表示為x的函數(shù):
(Ⅱ)試確定x,使修建此矩形場地圍墻的總費用最小,并求出最小總費用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為,設(shè)右焦點為,過原點的直線與橢圓交于兩點,線段的中點為,線段的中點為,且.
(1)求弦的長;
(2)當(dāng)直線的斜率,且直線時, 交橢圓于,若點在第一象限,求證:直線與軸圍成一個等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次馬拉松比賽中,30名運動員的成績(單位:分鐘)的莖葉圖如圖所示.若將運動員按成績由好到差編號為1﹣30號,再用系統(tǒng)抽樣方法從中抽取6人,則其中成績在區(qū)間[130,151]上的運動員人數(shù)是( )
A.3
B.4
C.5
D.6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com