12.函數(shù)f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分圖象如圖所示,則函數(shù)f(x)解析式f(x)=2sin(2x-$\frac{π}{3}$).

分析 由最值求出A,由周期求出ω,代入特殊點坐標求出φ.

解答 解:由圖象可知f(x)的最大值為2,周期T=2($\frac{11π}{12}-\frac{5π}{12}$)=π,
∴ω=$\frac{2π}{T}=2$.
∵f($\frac{5π}{12}$)=2,∴2sin($\frac{5π}{6}+$φ)=2,
∴$\frac{5π}{6}$+φ=$\frac{π}{2}+2kπ$,即φ=-$\frac{π}{3}$+2kπ.
∵-$\frac{π}{2}$<φ<$\frac{π}{2}$,∴k=0時,φ=-$\frac{π}{3}$.
故答案為:f(x)=2sin(2x-$\frac{π}{3}$).

點評 本題考查了三角函數(shù)的解析式的求解,正弦函數(shù)的圖象與性質,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.與25°角終邊相同的角是( 。
A.385°B.-325°C.335°D.-685°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.在△ABC中,角A,B,C的對邊分別為a,b,c,若a2=b2+$\frac{1}{4}{c^2}$,則$\frac{acosB}{c}$=$\frac{5}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖1,在矩形ABCD中,AB=$\sqrt{3}$,BC=4,E是邊AD上一點,且AE=3,把△ABE沿BE翻折,使得點A到A′,滿足平面A′BE與平面BCDE垂直(如圖2).
(1)若點P在棱A′C上,且CP=3PA′,求證:DP∥平面A′BE;
(2)求二面角B-A′E-D的余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在如圖所示的幾何體中,平面ACDE⊥平面ABC,CD∥AE,F(xiàn)是BE的中點,∠ACB=90°,AE=2CD=2,AC=BC=1,BE=$\sqrt{6}$.
(1)求證:DF∥平面ABC;
(2)求證:DF⊥平面ABE;
(3)求三棱錐D-BCE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.二項式${({ax+\frac{{\sqrt{3}}}{6}})^6}$的展開式中x5的系數(shù)為$\sqrt{3}$,則$\int_0^a{x^2}dx$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.執(zhí)行如圖所示的程序框圖,若輸出s=15,則框圖中①處可以填入k<4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在下列函數(shù)中既是奇函數(shù),又是在區(qū)間(0,+∞)上單調遞減的函數(shù)為( 。
A.$y=ln\frac{1}{|x|}$B.y=x-1C.$y={({\frac{1}{2}})^x}$D.y=x3+x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知f(x)=m(x-m)(x+m+3)在區(qū)間[1,+∞)上的值恒為負數(shù),且在區(qū)間(-∞,-4)上存在x0使得f(x0)>0,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案