17.已知圓(x+1)2+y2=4的圓心為C,點(diǎn)P是直線l:mx-y-5m+4=0上的點(diǎn),若該圓上存在點(diǎn)Q使得∠CPQ=30°,則實(shí)數(shù)m的取值范圍為( 。
A.[-1,1]B.[-2,2]C.$[{\frac{{\sqrt{3}-3}}{4},\frac{{\sqrt{3}+3}}{4}}]$D.$[{0,\frac{12}{5}}]$

分析 由題意,從直線上的點(diǎn)向圓上的點(diǎn)連線成角,當(dāng)且僅當(dāng)兩條線均為切線時(shí)才是最大的角,此時(shí)CP=4,利用圓上存在點(diǎn)Q使得∠CPQ=30°,可得圓心到直線的距離d=$\frac{|-6m+4|}{\sqrt{{m}^{2}+1}}$≤4,進(jìn)而得出答案.

解答 解:由題意,從直線上的點(diǎn)向圓上的點(diǎn)連線成角,當(dāng)且僅當(dāng)兩條線均為切線時(shí)才是最大的角,此時(shí)CP=4.
∵圓上存在點(diǎn)Q使得∠CPQ=30°,
∴圓心到直線的距離d=$\frac{|-6m+4|}{\sqrt{{m}^{2}+1}}$≤4,
∴0≤m≤$\frac{12}{5}$,
故選:D.

點(diǎn)評(píng) 本題考查了直線與圓相切的性質(zhì)、點(diǎn)到直線的距離的計(jì)算公式、數(shù)形結(jié)合思想方法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2017屆遼寧莊河市高三9月月考數(shù)學(xué)(理)試卷(解析版) 題型:解答題

中,內(nèi)角,的對(duì)邊分別為,,,且,已知,.求:

(Ⅰ)的值;

(Ⅱ)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=sin(ωx+$\frac{π}{3}$)+$\sqrt{3}$sin(ωx-$\frac{π}{6}$)(ω>0,x∈R)的最小正周期為π,則( 。
A.f(x)為偶函數(shù)B.f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上單調(diào)遞增
C.x=$\frac{π}{2}$為f(x)的圖象的一條對(duì)稱軸D.($\frac{π}{2}$,0)為f(x)的圖象的一個(gè)對(duì)稱中心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若x,y滿足$\left\{\begin{array}{l}x+y≥0\\ x≥1\\ x-y≥0\end{array}\right.$,則下列不等式恒成立的是( 。
A.y≥-1B.x≥2C.x+2y+2≥0D.2x-y+1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知不共線向量$\overrightarrow{a}$,$\overrightarrow$,|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,則$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$的夾角是( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知正四棱錐P-ABCD的體積為$\frac{4}{3}$,底面邊長(zhǎng)為2,則側(cè)棱PA的長(zhǎng)為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知拋物線C:x2=2py(p>0),拋物線上一點(diǎn)Q(m,$\frac{1}{2}$)到焦點(diǎn)的距離為1.
(Ⅰ)求拋物線C的方程
(Ⅱ)設(shè)過點(diǎn)M(0,2)的直線l與拋物線C交于A,B兩點(diǎn),且A點(diǎn)的橫坐標(biāo)為n(n∈N*
(。┯洝鰽OB的面積為f(n),求f(n)的表達(dá)式
(ⅱ)探究是否存在不同的點(diǎn)A,使對(duì)應(yīng)不同的△AOB的面積相等?若存在,求點(diǎn)A點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=xlnx.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)對(duì)于任意正實(shí)數(shù)x,不等式f(x)>kx-$\frac{1}{2}$恒成立,求實(shí)數(shù)k的取值范圍;
(3)是否存在最小的正常數(shù)m,使得:當(dāng)a>m時(shí),對(duì)于任意正實(shí)數(shù)x,不等式f(a+x)<f(a)•ex恒成立?給出你的結(jié)論,并說明結(jié)論的合理性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.對(duì)于定義域?yàn)镽的函數(shù)g(x),若存在正常數(shù)T,使得cosg(x)是以T為周期的函數(shù),則稱g(x)為余弦周期函數(shù),且稱T為其余弦周期.已知f(x)是以T為余弦周期的余弦周期函數(shù),其值域?yàn)镽.設(shè)f(x)單調(diào)遞增,f(0)=0,f(T)=4π.
(1)驗(yàn)證g(x)=x+sin$\frac{x}{3}$是以6π為周期的余弦周期函數(shù);
(2)設(shè)a<b,證明對(duì)任意c∈[f(a),f(b)],存在x0∈[a,b],使得f(x0)=c;
(3)證明:“u0為方程cosf(x)=1在[0,T]上得解,”的充要條件是“u0+T為方程cosf(x)=1在區(qū)間[T,2T]上的解”,并證明對(duì)任意x∈[0,T],都有f(x+T)=f(x)+f(T).

查看答案和解析>>

同步練習(xí)冊(cè)答案