已知點(diǎn)是直角坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),點(diǎn)到直線(是正常數(shù))的距離為,到點(diǎn)的距離為,且1.
(1)求動(dòng)點(diǎn)P所在曲線C的方程;
(2)直線過點(diǎn)F且與曲線C交于不同兩點(diǎn)A、B,分別過A、B點(diǎn)作直線的垂線,對(duì)應(yīng)的垂足分別為,求證=;
(3)記,
(A、B、是(2)中的點(diǎn)),,求的值.

(1)
(2)借助于聯(lián)立方程組,和韋達(dá)定理來借助于坐標(biāo)來證明垂直。
(3)

解析試題分析:解 (1) 設(shè)動(dòng)點(diǎn)為,  
依據(jù)題意,有,化簡(jiǎn)得
因此,動(dòng)點(diǎn)P所在曲線C的方程是:.          4分
由題意可知,當(dāng)過點(diǎn)F的直線的斜率為0時(shí),不合題意,
故可設(shè)直線,
聯(lián)立方程組,可化為,
則點(diǎn)的坐標(biāo)滿足
、,可得點(diǎn)、
于是,,
因此.                     9分
(3)依據(jù)(2)可算出,,
,
. 
所以,即為所求.                                     13分
考點(diǎn):直線與拋物線的位置關(guān)系
點(diǎn)評(píng):主要是考查了直線與拋物線位置關(guān)系的研究,以及設(shè)而不求的思想運(yùn)用,屬于中檔題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線,過軸上一點(diǎn)的直線與拋物線交于點(diǎn)兩點(diǎn)。
證明,存在唯一一點(diǎn),使得為常數(shù),并確定點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的頂點(diǎn)為原點(diǎn),其焦點(diǎn)到直線:的距離為.設(shè)為直線上的點(diǎn),過點(diǎn)作拋物線的兩條切線,其中為切點(diǎn).
(Ⅰ) 求拋物線的方程;
(Ⅱ) 當(dāng)點(diǎn)為直線上的定點(diǎn)時(shí),求直線的方程;
(Ⅲ) 當(dāng)點(diǎn)在直線上移動(dòng)時(shí),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的一個(gè)頂點(diǎn)為,焦點(diǎn)在軸上,中心在原點(diǎn).若右焦點(diǎn)到直線的距離為3.    
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓相交于不同的兩點(diǎn).當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的右焦點(diǎn)在圓上,直線交橢圓于、兩點(diǎn).
(1)求橢圓的方程;
(2)若(為坐標(biāo)原點(diǎn)),求的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,橢圓C以過點(diǎn)A(1,),兩個(gè)焦點(diǎn)為(-1,0)(1,0)。
(1)求橢圓C的方程;
(2)E,F是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個(gè)定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)直線是曲線的一條切線,
(Ⅰ)求切點(diǎn)坐標(biāo)及的值;
(Ⅱ)當(dāng)時(shí),存在,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),過點(diǎn)的直線與拋物線交于A,B兩點(diǎn),
(1)寫出拋物線的標(biāo)準(zhǔn)方程 (2)求⊿ABO的面積最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的兩個(gè)焦點(diǎn)為,點(diǎn)在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(diǎn),設(shè)點(diǎn)是橢圓上任一點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案