14.在空間內(nèi),可以確定一個平面的條件是(  )
A.兩兩相交的三條直線
B.三條直線,它們兩兩相交,但不交于同一點
C.三個點
D.三條直線,其中的一條與另外兩條直線分別相交

分析 利用公理三及其推論求解.

解答 解:在A 中,兩兩相交的三條直線能確定1個或3個平面,故A錯誤;
在B中,三條直線,它們兩兩相交,但不交于同一點,能確定一個平面,故B正確;
在C中,三個點共線,能確定無數(shù)個平面,故C錯誤;
在D中,三條直線,其中的一條與另外兩條直線分別相交,能確定1個或3個平面,故D錯誤.
故選:B.

點評 本題考查可以確定一個平面的條件的判斷,是基礎(chǔ)題,解題時要認(rèn)真審題,注意平面的基本性質(zhì)及推論的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如果a,b是異面直線,那么和a,b都垂直的直線( 。
A.有且只有一條B.有一條或兩條C.不存在或一條D.有無數(shù)多條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)$f(x)=\sqrt{2}sin\frac{x}{2}cos\frac{x}{2}-\sqrt{2}{sin^2}\frac{x}{2}$.
(1)求f(x)的最小正周期;
(2)求f(x)在區(qū)間[-π,0]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)是(-∞,+∞)上的偶函數(shù),若對于x≥0,都有f(x+2)=f(x),且當(dāng)x∈[0,2)時,f(x)=log2(x+1),則f(-2017)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=|2x+1|+|2x-3|,
(1)若關(guān)于x的不等式f(x)>|1-3a|恒成立,求實數(shù)a的取值范圍;
(2)若關(guān)于t的一元二次方程${t^2}-4\sqrt{2}t+f(m)=0$有實根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)點F為橢圓$C:\frac{x^2}{4m}+\frac{y^2}{3m}=1(m>0)$的左焦點,直線y=x被橢圓C截得弦長為$\frac{{4\sqrt{42}}}{7}$.
(1)求橢圓C的方程;
(2)圓$P:{(x+\frac{{4\sqrt{3}}}{7})^2}+{(y-\frac{{3\sqrt{3}}}{7})^2}={r^2}(r>0)$與橢圓C交于A,B兩點,M為線段AB上任意一點,直線FM交橢圓C于P,Q兩點AB為圓P的直徑,且直線FM的斜率大于1,求|PF|•|QF|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知雙曲線$\frac{x^2}{9}-\frac{y^2}{16}$=1的左右焦點分別為F1,F(xiàn)2,若雙曲線上一點P   滿足∠F1PF2=90°,求${S_{△{F_1}P{F_2}}}$=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.拋物線x=ay2(a≠0)的焦點坐標(biāo)是($\frac{1}{4a}$,0);雙曲線$\frac{x^2}{12}-\frac{y^2}{4}=1$的頂點到漸近線的距離為$\frac{\sqrt{30}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\frac{\sqrt{|x|}}{{e}^{x}}$(x∈R),若關(guān)于x的方程f2(x)-$\frac{1}{2}$mf(x)+$\frac{1}{2}$m-1=0恰好有4個不相等的實根,則m的取值范圍是( 。
A.(2,$\frac{\sqrt{2e}}{e}$+2)B.(1,$\frac{\sqrt{2e}}{e}$+1)C.(1,$\frac{\sqrt{2e}}{2e}$+1)D.(2,$\frac{\sqrt{2e}}{2e}$+2)

查看答案和解析>>

同步練習(xí)冊答案