分析 (1)運(yùn)用數(shù)列的遞推式:n=1時(shí),a1=S1,n>1時(shí),an=Sn-Sn-1,以及構(gòu)造等比數(shù)列,由等比數(shù)列的通項(xiàng)公式可得,注意n=1的情況是否成立;
(2)由(1)可得數(shù)列{Sn}在n∈N*遞增,即可得證.
解答 解:(1)Tn=3Sn-2n,n∈N*.①
當(dāng)n=1時(shí),T1=S1=3S1-2,
可得S1=1,
n=2時(shí),S1+S2=3S2-4,
解得S2=$\frac{5}{2}$,
當(dāng)n≥2時(shí),Tn-1=3Sn-1-2(n-1),②
①-②可得Sn=3Sn-3Sn-1-2,
即為Sn=$\frac{3}{2}$Sn-1+1,
即有Sn+2=$\frac{3}{2}$(Sn-1+2),
則Sn+2=(S2+2)•($\frac{3}{2}$)n-2,
可得Sn=$\frac{9}{2}$•($\frac{3}{2}$)n-2-2=3•($\frac{3}{2}$)n-1-2,對(duì)n=1也成立,
則Sn=3•($\frac{3}{2}$)n-1-2,n∈N*.
當(dāng)n=1時(shí),a1=S1=1;
當(dāng)n≥2時(shí),an=Sn-Sn-1=3•($\frac{3}{2}$)n-1-2-3•($\frac{3}{2}$)n-2+2
=($\frac{3}{2}$)n-1,對(duì)n=1也成立,
則數(shù)列{an}的通項(xiàng)公式為an=($\frac{3}{2}$)n-1,n∈N*.
(2)證明:由(1)得Sn=3•($\frac{3}{2}$)n-1-2,n∈N*.
由于$\frac{3}{2}$>1,可得數(shù)列{Sn}遞增,
即有Sn≥S1=1,
則Sn≥1,n∈N*.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式的求法,注意數(shù)列遞推式:n=1時(shí),a1=S1,n>1時(shí),an=Sn-Sn-1,以及等比數(shù)列的定義和通項(xiàng)公式,考查數(shù)列不等式的證明,注意運(yùn)用單調(diào)性,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3\sqrt{3}π}{8}$ | B. | $\frac{3\sqrt{3}π}{7}$ | C. | $\frac{3\sqrt{2}π}{8}$ | D. | $\frac{3\sqrt{2}π}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0.95 | B. | 0.05 | C. | 0.47 | D. | 0.48 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com