設(shè)函數(shù)f(x)=3ax2-2(a+b)x+b,其中a>0,b為任意常數(shù).證明:當(dāng)0≤x≤1時(shí),有|f(x)|≤max{f(0),f(1)}.(其中,max{x,y}=
x, x≥y
y, x<y
考點(diǎn):不等式的證明
專(zhuān)題:不等式
分析:由于函數(shù)的對(duì)稱(chēng)軸為x=
a+b
3a
,0≤x≤1,故需要進(jìn)行分類(lèi)討論,當(dāng)
a+b
3a
≥1,
a+b
3a
≤0時(shí),f(x)在[0,1]上是單調(diào)函數(shù),當(dāng)0<
a+b
3a
<1時(shí),即-a<b<2a,則-
a2+b2-ab
3a
≤f(x)≤max{f(0),f(1)}.從而可證得結(jié)論.
解答: 解:f(x)=3ax2-2(a+b)x+b=3a(x-
a+b
3a
2-
a2+b2-ab
3a

(1)當(dāng)
a+b
3a
≥1,
a+b
3a
≤0時(shí),f(x)在[0,1]上是單調(diào)函數(shù),
所以f(1)≤f(x)≤f(0),或f(0)≤f(x)≤f(1),且f(0)+f(1)=a>0.
所以|f(x)|≤max{f(0),f(1)}.
(2)當(dāng)0<
a+b
3a
<1時(shí),即-a<b<2a,則-
a2+b2-ab
3a
≤f(x)≤max{f(0),f(1)}.
①當(dāng)-a<b≤
b
2
時(shí),則則0<a+b≤
3
2
a

所以  f(1)-
a2+b2-ab
3a
=
2a2-b2-2ab
3a
=
3a2-(a+b)2
3a
1
4
a2
>0,
所以|f(x)|≤max{f(0),f(1)}.
②當(dāng)
a
2
<b<2a時(shí),則(b-
a
2
)(b-2a)<0
,即即a2+b2-
5
2
ab
<0,
所以b-
a2+b2-ab
3a
=
4ab-a2-b2
3a
5
2
ab-a2-b2
3a
>0,即f(0)>
a2+b2-ab
3a

所以|f(x)|≤max{f(0),f(1)}.
綜上所述:當(dāng)0≤x≤1時(shí),所以|f(x)|≤max{f(0),f(1)}.
點(diǎn)評(píng):本題以函數(shù)為載體,主要考查用導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,基本思路是:當(dāng)函數(shù)為增函數(shù)時(shí),導(dǎo)數(shù)大于零;當(dāng)函數(shù)為減函數(shù)時(shí),導(dǎo)數(shù)小于零,考查二次函數(shù)的最值,解題的關(guān)鍵是分類(lèi)討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)椋?,+∞)的函數(shù)f(x)滿(mǎn)足:
(1)對(duì)任意x∈(0,+∞),恒有f(2x)=f(x)成立;
(2)當(dāng)x∈(1,2]時(shí)f(x)=2-x.給出結(jié)論如下:
①對(duì)任意m∈Z,有f(2m)=0
②當(dāng)x∈(2,4]時(shí),有f(x)=4-2x;
③函數(shù)f(x)的值域?yàn)閇0,1);
④方程f(x)=log3x的實(shí)根個(gè)數(shù)為3;
⑤函數(shù)f(x)-
1
2
在區(qū)間(1,+∞)上的零點(diǎn)由小到大組成一個(gè)數(shù)列{an}.則{an}的通項(xiàng)公式為an=3•2n-2
其中所有正確的結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinθ=-
12
13
,θ是第三象限角,求cos(
π
6
+θ)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)雙曲線C:
x2
2
-y2=1的左、右頂點(diǎn)分別為A1、A2,垂直子x軸的直線m與雙曲線C交于不同的兩點(diǎn)P、Q.
(Ⅰ)求直線A1P與直線A2Q的交點(diǎn)M的軌跡E的方程;
(Ⅱ)設(shè)點(diǎn)T(2,0).過(guò)點(diǎn)F(1,0)作直線l與(Ⅰ)中的軌跡E交于不同的兩點(diǎn)名A、B,設(shè)
FA
FB
,若λ∈[-2,-1],求|
TA
+
TB
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)一動(dòng)直線l與曲線C:(x-1)2+(y-1)2=1相切,此直線和x、y軸的交點(diǎn)分別為A、B,且OA=a,OB=b(a>2,b>2)
(1)a、b之間滿(mǎn)足什么關(guān)系?
(2)求△OAB的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
1-lg(x-2)
的定義域?yàn)?div id="mmi2gs8" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知圓中兩條弦AB與CD相交與F,且DF=CF=
2
,E是AB延長(zhǎng)線上一點(diǎn),AF:FB:BE=4:2:1,若CE與圓相切,則線段CE的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知l線的方程為:(2m+1)x+(m+1)y-7m-4=0(m∈R),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ2-20=2ρcosθ+4ρsinθ,則直線l被圓C截得的線段的最短長(zhǎng)度為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三棱錐O-ABC的側(cè)棱OA,OB,OC兩兩垂直且長(zhǎng)度分別為2cm,3cm,1cm,則該三棱錐的體積是
 
cm3

查看答案和解析>>

同步練習(xí)冊(cè)答案