10.已知函數(shù)f(x)=x+$\frac{1}{x-1}$(x>1),則( 。
A.f(x)的最大值為2B.f(x)的最大值為3C.f(x)的最小值為2D.f(x)的最小值為3

分析 把函數(shù)f(x)變形,利用基本不等式求出f(x)的最小值.

解答 解:函數(shù)f(x)=x+$\frac{1}{x-1}$=(x-1)+$\frac{1}{x-1}$+1,
當(dāng)x>1時,x-1>0,
∴(x-1)+$\frac{1}{x-1}$≥2$\sqrt{(x-1)•\frac{1}{x-1}}$=2,
當(dāng)且僅當(dāng)x-1=$\frac{1}{x-1}$,即x=2時取“=”,
∴f(x)的最小值為2+1=3.
故選:D.

點評 本題考查了基本不等式的應(yīng)用問題,也考查了求解運算能力,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知圓錐的側(cè)面積是底面積的3倍,那么該圓錐的側(cè)面展開圖扇形的圓心角為( 。
A.90°B.120°C.150°D.180°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)a,b,c∈R,且b<a<0,則( 。
A.ac>bcB.ac2>bc2C.$\frac{1}{a}$$<\frac{1}$D.$\frac{a}$>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.?dāng)?shù)據(jù)x1,x2,…,x8平均數(shù)為6,標(biāo)準(zhǔn)差為2,則數(shù)據(jù)2x1-6,2x2-6,…,2x8-6的方差為( 。
A.16B.4C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.一只口袋里有大小形狀完全相同的10個小球,其中紅球與白球各2個,黑球與黃球各3個,從中隨機取3次,每次取3個小球,且每次取完后就放回,則這3次取球中,恰有2次所取的3個小球顏色各不相同的概率為( 。
A.$\frac{1}{8}$B.$\frac{3}{64}$C.$\frac{3}{8}$D.$\frac{9}{64}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知$\overrightarrow m=({2cosx+2\sqrt{3}sinx,1}),\overrightarrow n=({cosx,-y})$,且$\overrightarrow m⊥\overrightarrow n$.將y表示為x的函數(shù),若記此函數(shù)為f(x),
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)將f(x)的圖象向右平移$\frac{π}{6}$個單位,再將所得圖象上各點的橫坐標(biāo)變?yōu)樵瓉淼?倍(縱坐標(biāo)不變),得到函數(shù)g(x)的圖象,求函數(shù)g(x)在x∈[0,π]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.下列命題中正確的是①②.(寫出所有正確命題的序號)
①命題“?x0∈R,x${\;}_{0}^{2}$-1<0”的否定是“?x∈R,x2-1≥0”;
②命題“若x=3,則x2-2x-3=0”的否命題是“若x≠3,則x2-2x-3≠0”;
③若a,b∈R,則“l(fā)og${\;}_{\frac{1}{2}}$a>log${\;}_{\frac{1}{2}}$b”是“3a<3b”的必要不充分條件;
④“cosx=cosy”是“x=y+2kπ,k∈Z”的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,$\overrightarrow{AB}$=(cos$\frac{3x}{2}$,-sin$\frac{3x}{2}$),$\overrightarrow{AC}$=(cos$\frac{x}{2}$,sin$\frac{x}{2}$),其中x∈[$\frac{π}{6}$,$\frac{π}{3}$].
(I)若x=$\frac{π}{6}$,求|$\overrightarrow{BC}$|;
(II)記△ABC的邊BC上的高為h,若函數(shù)f(x)=|$\overrightarrow{BC}$|2+λ•h的最大值是5,求常數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,已知$\sqrt{3}asinC-c({2+cosA})=0$,其中角A、B、C所對的邊分別為a、b、c.求
(1)求角A的大;
(2)若$a=\sqrt{6}$,△ABC的面積為$\frac{{\sqrt{3}}}{2}$,求sinB+sinC的值.

查看答案和解析>>

同步練習(xí)冊答案