【題目】在直角坐標(biāo)系xoy中,曲線C1 (t為參數(shù),t≠0),其中0≤α<π,在以O(shè)為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=2sinθ,曲線C3:ρ=2 cosθ. (Ⅰ)求C2與C3交點的直角坐標(biāo);
(Ⅱ)若C2與C1相交于點A,C3與C1相交于點B,求|AB|的最大值.

【答案】解:(Ⅰ)曲線C2:ρ=2sinθ得ρ2=2ρsinθ,即x2+y2=2y,①

C3:ρ=2 cosθ,則ρ2=2 ρcosθ,即x2+y2=2 x,②

由①②得

即C2與C3交點的直角坐標(biāo)為(0,0),( , );

(Ⅱ)曲線C1的直角坐標(biāo)方程為y=tanαx,

則極坐標(biāo)方程為θ=α(ρ∈R,ρ≠0),其中0≤a<π.

因此A得到極坐標(biāo)為(2sinα,α),B的極坐標(biāo)為(2 cosα,α).

所以|AB|=|2sinα﹣2 cosα|=4|sin(α )|,

當(dāng)α= 時,|AB|取得最大值,最大值為4.


【解析】(Ⅰ)將C2與C3轉(zhuǎn)化為直角坐標(biāo)方程,解方程組即可求出交點坐標(biāo);(Ⅱ)求出A,B的極坐標(biāo),利用距離公式進行求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,正方體ABCD-A1B1C1D1中,點E,F(xiàn)分別為D1C1C1B1的中點,

AC∩BD=PA1C1∩EF=Q.求證:

(1)D,B,E,F(xiàn)四點共面.

(2)若A1C交平面BDEF于點R,則P,Q,R三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信紅包是一款可以實現(xiàn)收發(fā)紅包、查收記錄和提現(xiàn)的手機應(yīng)用.某網(wǎng)絡(luò)運營商對甲、乙兩個品牌各5種型號的手機在相同環(huán)境下,對它們搶到的紅包個數(shù)進行統(tǒng)計,得到如表數(shù)據(jù):

型號
手機品牌

甲品牌(個)

4

3

8

6

12

乙品牌(個)

5

7

9

4

3

(Ⅰ)如果搶到紅包個數(shù)超過5個的手機型號為“優(yōu)”,否則“非優(yōu)”,請據(jù)此判斷是否有85%的把握認為搶到的紅包個數(shù)與手機品牌有關(guān)?
(Ⅱ)如果不考慮其它因素,要從甲品牌的5種型號中選出3種型號的手機進行大規(guī)模宣傳銷售.
①求在型號Ⅰ被選中的條件下,型號Ⅱ也被選中的概率;
②以X表示選中的手機型號中搶到的紅包超過5個的型號種數(shù),求隨機變量X的分布列及數(shù)學(xué)期望E(X).
下面臨界值表供參考:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:K2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD與ADEF為平行四邊形,M,N,G分別是AB,AD,EF的中點求證:

1BE平面DMF;

2平面BDE平面MNG

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在兩塊鋼板上打孔,用釘帽呈半球形、釘身為圓柱形的鉚釘(圖1)穿在一起,在沒有帽的一端錘打出一個帽,使得與釘帽的大小相等.鉚合的兩塊鋼板,成為某種鋼結(jié)構(gòu)的配件,其截面圖如圖2.(單位:mm,加工中不計損失).

(1)若釘身高度是釘帽高度的2倍,求鉚釘?shù)谋砻娣e.

(2)若每塊鋼板的厚度為12mm,求釘身的長度(結(jié)果精確到1 mm).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形的面積可無限接近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”,劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”,如圓是利用劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,則輸出的值為( )(參考數(shù)據(jù):sin15°=0.2588,sin7.50=0.1305)
A.12
B.24
C.48
D.96

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:直線mx﹣y+1=0與圓(x﹣2)2+y2=4有公共點;設(shè)命題q:實數(shù)m滿足方程 + =1表示雙曲線.
(1)若“p∧q”為真命題,求實數(shù)m的取值范圍;
(2)若“p∧q”為假命題,“p∨q”為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱上的有界函數(shù),其中稱為函數(shù)的上界,已知函數(shù)

Ⅰ)若是奇函數(shù),求的值.

Ⅱ)當(dāng)時,求函數(shù)上的值域,判斷函數(shù)上是否為有界函數(shù),并說明理由.

Ⅲ)若函數(shù)上是以為上界的函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著網(wǎng)絡(luò)的發(fā)展,人們可以在網(wǎng)絡(luò)上購物、玩游戲、聊天、導(dǎo)航等,所以人們對上網(wǎng)流量的需求越來越大.某電信運營商推出一款新的“流量包”套餐.為了調(diào)查不同年齡的人是否愿意選擇此款“流量包”套餐,隨機抽取50個用戶,按年齡分組進行訪談,統(tǒng)計結(jié)果如表.

組號

年齡

訪談人數(shù)

愿意使用

1

[18,28)

4

4

2

[28,38)

9

9

3

[38,48)

16

15

4

[48,58)

15

12

5

[58,68)

6

2

(Ⅰ)若在第2、3、4組愿意選擇此款“流量包”套餐的人中,用分層抽樣的方法抽取12人,則各組應(yīng)分別抽取多少人?
(Ⅱ)若從第5組的被調(diào)查者訪談人中隨機選取2人進行追蹤調(diào)查,求2人中至少有1人愿意選擇此款“流量包”套餐的概率.
(Ⅲ)按以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷以48歲為分界點,能否在犯錯誤不超過1%的前提下認為,是否愿意選擇此款“流量包”套餐與人的年齡有關(guān)?

年齡不低于48歲的人數(shù)

年齡低于48歲的人數(shù)

合計

愿意使用的人數(shù)

不愿意使用的人數(shù)

合計

參考公式: ,其中:n=a+b+c+d.

P(k2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊答案