【題目】已知圓C:(x﹣1)2+y2=r2(r>0)與直線l:y=x+3,且直線l有唯一的一個點P,使得過P點作圓C的兩條切線互相垂直,則r=;設EF是直線l上的一條線段,若對于圓C上的任意一點Q,∠EQF≥ ,則|EF|的最小值= .
科目:高中數(shù)學 來源: 題型:
【題目】有甲乙兩個班級進行數(shù)學考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的列聯(lián)表.
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
甲班 | 10 | ||
乙班 | 30 | ||
總計 | 105 |
已知在全部105人中隨機抽取1人為優(yōu)秀的概率為.
(1)請完成上面的列聯(lián)表;(把列聯(lián)表自己畫到答題卡上)
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可靠性要求,能否認為“成績與班級有關系”?
參考公式:
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:(x﹣1)2+y2=r2(r>0)與直線l:y=x+3,且直線l有唯一的一個點P,使得過P點作圓C的兩條切線互相垂直,則r=;設EF是直線l上的一條線段,若對于圓C上的任意一點Q,∠EQF≥ ,則|EF|的最小值= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=x2﹣a|x﹣1|+b(a>0,b>﹣1)
(1)若b=0,a>2,求f(x)在區(qū)間[0,2]內(nèi)的最小值m(a);
(2)若f(x)在區(qū)間[0,2]內(nèi)不同的零點恰有兩個,且落在區(qū)間[0,1),(1,2]內(nèi)各一個,求a﹣b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC中,角A、B、C所對的邊分別為a、b、c,且2acosB=3b﹣2bcosA.
(1)求 的值;
(2)設AB的中垂線交BC于D,若cos∠ADC= ,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學著作《九章算術》中有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升.問:米幾何?”如圖所示的是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的(單位:升),則輸入的值為( )
A. 6 B. 7 C. 8 D. 9
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐S—ABCD的底面是正方形,側棱SA⊥底面ABCD,
過A作AE垂直SB交SB于E點,作AH垂直SD交SD于H點,平面AEH交SC于K點,且AB=1,SA=2.
(1)證明E、H在以AK為直徑的圓上,且當點P是SA上任一點時,試求的最小值;
(2)求平面AEKH與平面ABCD所成的銳二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com