【題目】已知點(diǎn)A(﹣1,0),B(1,0),C(0,1),直線y=ax+b(a>0)將△ABC分割為面積相等的兩部分,則b的取值范圍是( 。
A.(0,1)B.C.D.
【答案】B
【解析】
先求得直線y=ax+b(a>0)與x軸的交點(diǎn)為M(,0),由0可得點(diǎn)M在射線OA上.求出直線和BC的交點(diǎn)N的坐標(biāo),①若點(diǎn)M和點(diǎn)A重合,求得b;②若點(diǎn)M在點(diǎn)O和點(diǎn)A之間,求得b; ③若點(diǎn)M在點(diǎn)A的左側(cè),求得b>1.再把以上得到的三個(gè)b的范圍取并集,可得結(jié)果.
由題意可得,三角形ABC的面積為 1,
由于直線y=ax+b(a>0)與x軸的交點(diǎn)為M(,0),
由直線y=ax+b(a>0)將△ABC分割為面積相等的兩部分,可得b>0,
故0,故點(diǎn)M在射線OA上.
設(shè)直線y=ax+b和BC的交點(diǎn)為N,則由可得點(diǎn)N的坐標(biāo)為(,).
①若點(diǎn)M和點(diǎn)A重合,如圖:
則點(diǎn)N為線段BC的中點(diǎn),故N(,),
把A、N兩點(diǎn)的坐標(biāo)代入直線y=ax+b,求得a=b.
②若點(diǎn)M在點(diǎn)O和點(diǎn)A之間,如圖:
此時(shí)b,點(diǎn)N在點(diǎn)B和點(diǎn)C之間,
由題意可得三角形NMB的面積等于,
即,即 ,可得a0,求得 b,
故有b.
③若點(diǎn)M在點(diǎn)A的左側(cè),
則b,由點(diǎn)M的橫坐標(biāo)1,求得b>a.
設(shè)直線y=ax+b和AC的交點(diǎn)為P,則由 求得點(diǎn)P的坐標(biāo)為(,),
此時(shí),由題意可得,三角形CPN的面積等于,即 (1﹣b)|xN﹣xP|,
即(1﹣b)||,化簡(jiǎn)可得2(1﹣b)2=|a2﹣1|.
由于此時(shí) b>a>0,0<a<1,∴2(1﹣b)2=|a2﹣1|=1﹣a2 .
兩邊開(kāi)方可得 (1﹣b)1,∴1﹣b,化簡(jiǎn)可得 b>1,
故有1b.
綜上可得b的取值范圍應(yīng)是 ,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的焦距為,且過(guò)點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)為橢圓上一點(diǎn),過(guò)點(diǎn)作軸的垂線,垂足為.取點(diǎn),連接,過(guò)點(diǎn)作的垂線交軸于點(diǎn).點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn),作直線,問(wèn)這樣作出的直線是否與橢圓一定有唯一的公共點(diǎn)?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高二年級(jí)共有800名學(xué)生參加2019年全國(guó)高中數(shù)學(xué)聯(lián)賽江蘇賽區(qū)初賽,為了解學(xué)生成績(jī),現(xiàn)隨機(jī)抽取40名學(xué)生的成績(jī)(單位:分),并列成如下表所示的頻數(shù)分布表:
分組 | |||||
頻數(shù) |
⑴試估計(jì)該年級(jí)成績(jī)不低于90分的學(xué)生人數(shù);
⑵成績(jī)?cè)?/span>的5名學(xué)生中有3名男生,2名女生,現(xiàn)從中選出2名學(xué)生參加訪談,求恰好選中一名男生一名女生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠A=60°,AB=3,AC=2.若 =2 , =λ ﹣ (λ∈R),且 =﹣4,則λ的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,角α與角β均以O(shè)x為始邊,它們的終邊關(guān)于y軸對(duì)稱(chēng),若sinα= ,則cos(α﹣β)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】北京101中學(xué)校園內(nèi)有一個(gè)“少年湖”,湖的兩側(cè)有一個(gè)音樂(lè)教室和一個(gè)圖書(shū)館,如圖,若設(shè)音樂(lè)教室在A處,圖書(shū)館在B處,為測(cè)量A,B兩地之間的距離,某同學(xué)選定了與A,B不共線的C處,構(gòu)成△ABC,以下是測(cè)量的數(shù)據(jù)的不同方案:①測(cè)量∠A,AC,BC;②測(cè)量∠A,∠B,BC;③測(cè)量∠C,AC,BC;④測(cè)量∠A,∠C,∠B. 其中一定能唯一確定A,B兩地之間的距離的所有方案的序號(hào)是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示.
(1)求與的值;
(2)設(shè)的三個(gè)角、、所對(duì)的邊依次為、、,如果,且,試求的取值范圍;
(3)求函數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著生活水平的提高,越來(lái)越多的人參與了潛水這項(xiàng)活動(dòng).某潛水中心調(diào)查了100名男性與100女性下潛至距離水面5米時(shí)是否耳鳴,下圖為其等高條形圖:
①繪出列聯(lián)表;
②根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為耳鳴與性別有關(guān)系?
附:,其中.
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com