19.設(shè)n為正整數(shù),(x-$\frac{1}{x\sqrt{x}}$)n展開(kāi)式中存在常數(shù)項(xiàng),則n的一個(gè)可能取值為( 。
A.8B.6C.5D.2

分析 先求出二項(xiàng)式展開(kāi)式的通項(xiàng)公式,再令x的冪指數(shù)等于0,求得n與r的關(guān)系,從而確定n的取值.

解答 解:∵(x-$\frac{1}{x\sqrt{x}}$)n展開(kāi)式的通項(xiàng)公式為 Tr+1=C2n-r(-1)r${x}^{n-\frac{5}{2}r}$,令n-$\frac{5}{2}$r=0,即n=$\frac{5}{2}$r,
故n應(yīng)該是5的倍數(shù),
故選:C.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開(kāi)式的通項(xiàng)公式,求展開(kāi)式中某項(xiàng)的系數(shù),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,在正方體ABCD-A1B1C1D1中,M,N分別是AB,BC的中點(diǎn). 
(1)求證:平面B1MN⊥平面BB1D1D;
(2)在棱DD1上是否存在一點(diǎn)P,使得BD1∥平面PMN,若存在,求D1P:PD的比值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知圓C:(x-a)2+(y-a-2)2=9,其中a為實(shí)常數(shù).
(1)若直線l:x+y-4=0被圓C截得的弦長(zhǎng)為2,求a的值;
(2)設(shè)點(diǎn)A(3,0),O為坐標(biāo)原點(diǎn),若圓C上存在點(diǎn)M,使|MA|=2|MO|,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知直線y=-2x+1與橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)相交于A,B兩點(diǎn),且線段AB的中點(diǎn)在直線x-4y=0上,則此橢圓的離心率為(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知點(diǎn)A,B分別是橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左,右頂點(diǎn),長(zhǎng)軸長(zhǎng)為4,離心率為$\frac{1}{2}$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)P為橢圓C上除長(zhǎng)軸頂點(diǎn)外的任一點(diǎn),直線AP,PB與直線x=4分別交于點(diǎn)M,N,已知常數(shù)λ>0,求$λ\overrightarrow{PM}•\overrightarrow{PN}+\overrightarrow{PA}•\overrightarrow{PB}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}中,a1=2,${a_{n+1}}=2-\frac{1}{a_n}$,數(shù)列{bn}中,${b_n}=\frac{1}{{{a_n}-1}}$,其中n∈N*
(1)求證:數(shù)列{bn}是等差數(shù)列;
(2)若Sn是數(shù)列{bn}的前n項(xiàng)和,求$\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.執(zhí)行如圖的程序框圖,若輸入a=10011,k=2,n=5,則輸出的b的值是( 。
A.38B.39C.18D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.下列4個(gè)命題中,正確的是(1)(2)(3)(4)(寫(xiě)出所有正確的題號(hào)).
(1)命題“若a≤b,則ac≤bc”的否命題是“若a>b,則ac>bc”;
(2)“p∧q為真”是“p∨q為真”的充分條件;
(3)“若p則q為真”是“若¬q則¬p為真”的充要條件;
(4)$p:\left\{{x|}\right.-\frac{1}{2}≤sinx≤\frac{1}{2},x∈(-\frac{π}{2},\frac{π}{2})\left.{\;}\right\}$,$q:\left\{{x|}\right.-\frac{1}{2}≤x≤\frac{1}{2}\left.{\;}\right\}$,p是q的必要不充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在正方體ABCD-A1B1C1D1中,若AD的中點(diǎn)為M,DD1的中點(diǎn)為N,則異面直線MN與BD所成角的大小是60°.

查看答案和解析>>

同步練習(xí)冊(cè)答案