16.在同一坐標(biāo)系中,直線l是函數(shù)f(x)=$\sqrt{1-{x}^{2}}$在(0,1)處的切線,若直線l也是g(x)=-x2+mx的切線,則m=±2.

分析 由函數(shù)f(x)的圖象為上半圓x2+y2=1,可得切線方程為y=1,代入y=-x2+mx,運(yùn)用判別式為0,解得m.

解答 解:函數(shù)y=f(x)=$\sqrt{1-{x}^{2}}$,
即為上半圓x2+y2=1,(0,1)為與y軸的交點(diǎn),
即有在(0,1)處的切線為y=1,
由題意可得直線l:y=1也是g(x)=-x2+mx的切線,
可得-x2+mx=1有兩個(gè)相等的實(shí)根,
即為判別式為0,即m2-4=0,
解得m=±2,
故答案為:±2.

點(diǎn)評(píng) 本題考查切線的方程的求法,注意運(yùn)用圓的切線方程和直線和拋物線相切的條件:判別式為0,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知tan(α-β)=2,tan(α+β)=7,求tan2β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)P是左、右頂點(diǎn)分別為A,B的雙曲線x2-y2=1上的點(diǎn),若直線PA的傾斜角為$\frac{2π}{3}$,則直線PB的傾斜角是( 。
A.$\frac{π}{6}$B.$\frac{3π}{4}$C.$\frac{5π}{6}$D.$\frac{11π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知$cosα=\frac{4}{5}$,$cos(α+β)=-\frac{5}{13}$,且α、β均為銳角,求cosβ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知集合A={x|y=ln(x-1)},集合B={x|x2-3x>0},則A∩(∁RB)=( 。
A.(1,3)B.(1,3]C.[0,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知集合C={(x,y)|f(x,y)=0},若對(duì)于任意(x1,y1)∈C,存在(x2,y2)∈C,使x1x2+y1y2=0成立,則稱集合C是“好集合”.給出下列4個(gè)集合:C1={(x,y)|x2+y2=9},C2={(x,y)|x2-y2=9},C3={(x,y)|2x2+y2=9},C4={(x,y)|x2+y=9},其中為“好集合”的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知f(x)是定義在R上的偶函數(shù),且x≤0時(shí),f(x)=log${\;}_{\frac{1}{2}}$(1-x).
(1)求f(0),f(1);
(2)求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)=$\frac{1}{3}{x^3}$-$\frac{2}{x^2}$+x+d在R上單調(diào),則b的取值范圍為[-2,2].(用區(qū)間表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知Anm=11×10×9××…×5,則m+n為18.

查看答案和解析>>

同步練習(xí)冊(cè)答案