【題目】已知以線段EF為直徑的圓內切于圓Ox2+y216

1)若點F的坐標為(﹣2,0),求點E的軌跡C的方程;

2)在(1)的條件下,軌跡C上存在點T,使得,其中M,N為直線ykx+bb≠0)與軌跡C的交點,求△MNT的面積.

【答案】1;(22

【解析】

1)設FE的中點為Q,切點為G,連OQ,QG,取F關于y軸的對稱點F′,可得|FE|+|EF|8,由橢圓的定義,可得解.

2)聯(lián)立MN與橢圓的方程,由T在橢圓上得到k,b關系,利用k,b 表示MNT的底邊MN和高,即得解.

FE的中點為Q,切點為G,連OQ,QG,

|OQ|+|QG||OG|4

F關于y軸的對稱點F,連FE,

|FE|+|EF|2|OQ|+|QG|)=8

所以點E的軌跡是以F,F為焦點,長軸長為4的橢圓.

其中,a4,c2b2,

則曲線C的方程為

2)由題意,設Mx1,y1),Nx2,y2),則Tx1+x2,y1+y2).

聯(lián)立直線MN與曲線C方程,可得

,

整理,得(4k2+1x2+8kbx+4b2160.則

y1+y2kx1+x2+2bk+2b

T,).

T在軌跡C上,

2+4216

化簡,整理,得:b24k2+1

∵|MN||x1x2|

4

T到直線MN的距離d

SMNT|MN|d

4

2

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)求的單調區(qū)間和極值;

2)若對于任意的,總存在,使得成立,求正實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,角,的對邊分別為,,,已知.

1)若,的面積為,求,的值;

2)若,且角為鈍角,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,函數(shù).

1)求函數(shù)的單調區(qū)間;

2)設函數(shù),若有兩個相異極值點,且,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是平行四邊形,側面是邊長為2的正三角形, , .

(Ⅰ)求證:平面平面;

(Ⅱ)設是棱上的點,當平面時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=lnx+ax21).

1)討論函數(shù)fx)的單調性;

2)當a,x[1,+∞)時,證明:fxx1ex

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點AB關于坐標原點O對稱,,以M為圓心的圓過A,B兩點,且與直線相切,若存在定點P,使得當A運動時,為定值,則點P的坐標為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“割圓術”是劉徽最突出的數(shù)學成就之一,他在《九章算術注》中提出割圓術,并作為計算圓的周長,面積已經圓周率的基礎,劉徽把圓內接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數(shù)值,這個結果是當時世界上圓周率計算的最精確數(shù)據(jù).如圖,當分割到圓內接正六邊形時,某同學利用計算機隨機模擬法向圓內隨機投擲點,計算得出該點落在正六邊形內的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數(shù)據(jù):

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,曲線的參數(shù)方程為t為參數(shù))。以坐標原點為極點,以x軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

1)求的普通方程和 的直角坐標方程;

2)若,交于A,B兩點,P點極坐標為,求的值.

查看答案和解析>>

同步練習冊答案