精英家教網 > 高中數學 > 題目詳情

【題目】為了解甲、乙兩種離子在小鼠體內的殘留程度,進行如下試驗:將200只小鼠隨機分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經過一段時間后用某種科學方法測算出殘留在小鼠體內離子的百分比.根據試驗數據分別得到如下直方圖:

為事件:“乙離子殘留在體內的百分比不低于”,根據直方圖得到的估計值為.

(1)求乙離子殘留百分比直方圖中的值;

(2)分別估計甲、乙離子殘留百分比的平均值(同一組中的數據用該組區(qū)間的中點值為代表).

【答案】(1) ,;(2) ,.

【解析】

(1)可解得的值;(2)根據公式求平均數.

(1)由題得,解得,由,解得.

(2)由甲離子的直方圖可得,甲離子殘留百分比的平均值為,

乙離子殘留百分比的平均值為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,為等邊三角形,是線段上的一點,且平面.

(1)求證:的中點;

(2)若的中點,連接,,,平面平面,,求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點也是橢圓的一個焦點,點在橢圓短軸上,且.

(1)求橢圓的方程;

(2)設為橢圓上的一個不在軸上的動點,為坐標原點,過橢圓的右焦點的平行線,交曲線兩點,求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)求的單調區(qū)間;

(2)記的最大值為,若,求證:;

(3)若,記集合中的最小元素為,設函數,求證:的極小值點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)討論函數的單調性;

2)當時,對于任意正實數,不等式恒成立,試判斷實數的大小關系.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200.在機器使用期間,如果備件不足再購買,則每個500.現需決策在購買機器時應同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內更換的易損零件數,得下面柱狀圖:

x表示1臺機器在三年使用期內需更換的易損零件數,y表示1臺機器在購買易損零件上所需的費用(單位:元), 表示購機的同時購買的易損零件數.

=19,yx的函數解析式;

若要求需更換的易損零件數不大于的頻率不小于0.5,的最小值;

假設這100臺機器在購機的同時每臺都購買19個易損零件,或每臺都購買20個易損零件,分別計算這100臺機器在購買易損零件上所需費用的平均數,以此作為決策依據,購買1臺機器的同時應購買19個還是20個易損零件?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的右頂點為,上頂點為,右焦點為.連接并延長與橢圓相交于點,且

(Ⅰ)求橢圓的方程;

(Ⅱ)設經過點的直線與橢圓相交于不同的兩點,直線分別與直線相交于點,點.若的面積是的面積的2倍,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓的焦距為4,且過點

1)求橢圓的方程

2)設橢圓的上頂點為,右焦點為,直線與橢圓交于、兩點,問是否存在直線,使得的垂心,若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】判斷下列命題的真假.

1)如果直線平行于直線,則平行于經過的任何一個平面;

2)如果一條直線不在平面內,則這條直線就與這個平面平行;

3)過直線外一點,可以作無數個平面與這條直線平行;

4)如果一條直線與一個平面平行,則它與該平面內的任何直線都平行.

查看答案和解析>>

同步練習冊答案