【題目】已知數(shù)列的前項(xiàng)和為,滿足 (),數(shù)列滿足 (),且
(1)證明數(shù)列為等差數(shù)列,并求數(shù)列和的通項(xiàng)公式;
(2)若,求數(shù)列的前項(xiàng)和;
(3)若,數(shù)列的前項(xiàng)和為,對(duì)任意的,都有,求實(shí)數(shù)的取值范圍.
【答案】(1), ;(2);(3)
【解析】試題分析:(1)兩邊同除以,得,可求得。用公式,統(tǒng)一成,可求得。(2)由(1),代入得 ,由并項(xiàng)求和可得。(3)由(1)由錯(cuò)位相減法可求得,代入可求。
試題解析:(1)由兩邊同除以,
得,
從而數(shù)列為首項(xiàng),公差的等差數(shù)列,所以,
數(shù)列的通項(xiàng)公式為.
當(dāng)時(shí), ,所以.
當(dāng)時(shí), , ,
兩式相減得,又,所以,
從而數(shù)列為首項(xiàng),公比的等比數(shù)列,
從而數(shù)列的通項(xiàng)公式為.
(2)
=
(3)由(1)得,
,
所以,兩式相減得
所以,
由(1)得,
因?yàn)閷?duì) ,即恒成立,
所以恒成立,
記,所以,
因?yàn)?/span> ,從而數(shù)列為遞增數(shù)列
所以當(dāng)時(shí), 取最小值,于是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在城市舊城改造中,某小區(qū)為了升級(jí)居住環(huán)境,擬在小區(qū)的閑置地中規(guī)劃一個(gè)面積為的矩形區(qū)域(如圖所示),按規(guī)劃要求:在矩形內(nèi)的四周安排寬的綠化,綠化造價(jià)為200元/,中間區(qū)域地面硬化以方便后期放置各類健身器材,硬化造價(jià)為100元/.設(shè)矩形的長(zhǎng)為.
(1)設(shè)總造價(jià)(元)表示為長(zhǎng)度的函數(shù);
(2)當(dāng)取何值時(shí),總造價(jià)最低,并求出最低總造價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高一某班50名學(xué)生參加防疫知識(shí)競(jìng)賽,將所有成績(jī)制作成頻率分布表如下:
分組 | 頻數(shù) | 頻率 |
0.06 | ||
35 | 0.070 | |
6 | 0.12 | |
4 |
(1)求頻率分布表中的值;
(2)從成績(jī)?cè)?/span>的學(xué)生中選出2人,請(qǐng)寫出所有不同的選法,并求選出2人的成績(jī)都在中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(其中是常數(shù),,),函數(shù)的導(dǎo)函數(shù)為,且.
(Ⅰ)若,求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),若函數(shù)在區(qū)間上的最大值為,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: ()的離心率為,右焦點(diǎn)為,斜率為1的直線與橢圓交于、兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為.
(1)求橢圓的方程;
(2)求△的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形中,,且分別為線段的中點(diǎn),沿把折起,使,得到如下的立體圖形.
(1)證明:平面平面;
(2)若,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,,直線AD與直線BD相交于點(diǎn)D,直線BD的斜率減去直線AD的斜率的差是2,設(shè)D點(diǎn)的軌跡為曲線C.
求曲線C的方程;
已知直線l過(guò)點(diǎn),且與曲線C交于P,Q兩點(diǎn)Q異于A,,問(wèn)在y軸上是否存在定點(diǎn)G,使得?若存在,求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓M的方程為x2+(y-2)2=1,直線l的方程為x-2y=0,點(diǎn)P在直線l上,過(guò)點(diǎn)P作圓M的切線PA,PB,切點(diǎn)為A,B.
(Ⅰ)若∠APB=60°,試求點(diǎn)P的坐標(biāo);
(Ⅱ)若P點(diǎn)的坐標(biāo)為(2,1),過(guò)P作直線與圓M交于C,D兩點(diǎn),當(dāng)CD=時(shí),求直線CD的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班級(jí)甲、乙兩個(gè)小組各有10位同學(xué),在一次期中考試中,兩個(gè)小組同學(xué)的數(shù)學(xué)成績(jī)?nèi)缦拢?/span>
甲組:94,69,73,86,74,75,86,88,97,98;
乙組:75,92,82,80,95,81,83,91,79,82.
畫出這兩個(gè)小組同學(xué)數(shù)學(xué)成績(jī)的莖葉圖,判斷哪一個(gè)小組同學(xué)的數(shù)學(xué)成績(jī)差異較大,并說(shuō)明理由;
從這兩個(gè)小組數(shù)學(xué)成績(jī)?cè)?0分以上的同學(xué)中,隨機(jī)選取2人在全班介紹學(xué)習(xí)經(jīng)驗(yàn),求選出的2位同學(xué)不在同一個(gè)小組的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com