如圖,在正四棱錐P-ABCD中,底面是邊長為2的正方形,側棱PA=
6
,
E為BC的中點,F(xiàn)是側棱PD上的一動點.
(1)證明:AC⊥BF;
(2)當直線PE∥平面ACF時,求三棱錐F-ACD的體積.
考點:棱柱、棱錐、棱臺的體積,空間中直線與直線之間的位置關系
專題:空間位置關系與距離
分析:(1)得出PO⊥面ABCD,AC⊥PO,AC⊥面PBD,判斷即可AC⊥BF,
(2)得出比例線段
DG
DE
=
DF
DP
,
EC
AD
=
GE
DG
=
1
2
,
DG
DE
=
2
3
,運用體積公式求解即可vF-ACD=
1
3
S△ACD•FH
解答: 解:(1)連接BD,設AC∩BD=0,連接PO,

則PO⊥面ABCD,
∴AC⊥PO,
∵四邊形ABCD為正方形,
∴AC⊥BD,BD∩OP=O
∴AC⊥面PBD,∴AC⊥BF,
(2)連接DE交AC于G點,連接FG,
∵PE∥平面ACF,∴PE∥FG
DG
DE
=
DF
DP
,
又CE=
1
2
BC
=
1
2
AD
,BC∥AD
EC
AD
=
GE
DG
=
1
2
,∴
DG
DE
=
2
3

過F作FH⊥DB垂足為H則FH∥OP
FH
OP
=
DF
DP
=
2
3
,
∴FH=
2
3
OP=
4
3

∴vF-ACD=
1
3
S△ACD•FH=
1
3
×
1
2
×22
×
4
3
=
8
9
點評:本題考查了空間幾何體的性質,線面的垂直,體積的求解,屬于中檔題,關鍵是確定幾何題的高,底面積,難度不大.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

選擇適當?shù)姆椒ū硎鞠铝屑希?br />(1)由x2-1的因式組成的集合;
(2)“welcome to Beijing”中的所有字母組成的集合;
(3)平面直角坐標系內第三象限的點組成的集合;
(4)以A為圓心,r為半徑的圓上的所有點組成的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(1,1)是函數(shù)f(x)=lnx+
1
2
ax2-(a+1)x的圖象上一點.
(1)求f(x)的單調區(qū)間.
(2)證明:存在a∈(1,+∞),使得f(a)=f(
1
3
);
(3)記函數(shù)y=f(x)的圖象為曲線C,設點A(x1,y1),B(x2,y2)是曲線C上的不同兩點,如果在曲線C上存在點M(x0,y0),使得①:x0=
x1+x2
2
;②:曲線C在點M處的切線平行于直線AB,則稱函數(shù)f(x)存在“中值相依切線”,試問:函數(shù)f(x)是否存在“中值相依切線”,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一家電訊公司在某大學對學生每月的手機話費進行抽樣調查,隨機抽取了100名學生,將他們的手機話費情況進行統(tǒng)計分析,繪制成頻率分布直方圖(如圖所示).如果該校有大學生5000人,請估計該校每月手機話費在[50,70)的學生人數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
(a-1)x2-2ax+b+2,x≤0
(a-1)x+b+2,x>0
,若不等式f(x)<0的解集為非空集合D,且D⊆(-1,2),則z=2a-b的取值范圍為(  )
A、(4,+∞)
B、[-4,+∞)
C、(-∞,4)
D、(-1,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩位同學在相同的5次數(shù)學測試中,測試成績如圖所示,設
S,S分別為甲、乙兩位同學數(shù)學測試成績的標準差,則S,S
的大小關系是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點為F,過F的直線l交雙曲線的漸近線于A,B兩點,且與其中一條漸近線垂直,若
AF
=4
FB
,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果|2x+1|+2|x-a|≥5的解集為R,則正數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{xn}對任意的n∈N*,都有xn-2xn+1+xn+2<0成立,則稱數(shù)列{xn}為“亞等差數(shù)列”,設數(shù)列{an}是各項都為正數(shù)的等比數(shù)列,其前n項和為Sn,且a1=1,S1+S2+S3=
17
4

(1)求證:數(shù)列{Sn}是“亞等差數(shù)列”;
(2)設bn=(1-nan)t+n2an,若數(shù)列b3,b4,b5…,bm是“亞等差數(shù)列”,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案