執(zhí)行如圖所示的程序框圖,輸出S的值為
 

考點:程序框圖
專題:計算題,算法和程序框圖
分析:算法的功能是計算S=32-31+33-32+…+3n+1-3n=3n+1-31的值,根據(jù)條件確定跳出循環(huán)的n值,計算輸出的S值.
解答: 解:由程序框圖知:算法的功能是計算S=32-31+33-32+…+3n+1-3n=3n+1-31的值,
∵跳出循環(huán)的n值為4,
∴輸出S=34-3=78.
故答案為:78.
點評:本題考查了直到型循環(huán)結構的程序框圖,關鍵框圖的流程判斷算法的功能是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax2-(2a+1)x+2.
(Ⅰ)若f(x)>-x-1恒成立,求a的取值范圍;
(Ⅱ)當a>0時,解不等式:f(x)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知扇形AOB是半徑為2,圓心角為
π
6
的裝飾材料,點P是弧AB上的動點,△PQR為扇形的內(nèi)接三角形,且PQ∥OA,某設計師計劃在該扇形裝飾材料上彩繪,并以△PQR為主題著色板,記∠POA=θ.
(Ⅰ)將主題著色板的面積S表示為θ的函數(shù);
(Ⅱ)當角θ取何值時,主題著色板的面積S最大?并求出這個最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l的參數(shù)方程為:
x=t
y=1+2t
(t為參數(shù)),圓C的極坐標方程為ρ=2cosθ,則圓C的圓心到l的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=3sin(x-10°)+5sin(x-70°)的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=(k-2)x2+(k-3)x+3是偶函數(shù),則f(x)的遞減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=2cos(x-
π
3
)的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a=
1
2
,b=
1
3
,則
3a2-ab
3a2+5ab-2b2
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在5個并排的正方形圖案中作出一個∠AOnB=135°(n=1,2,3,4,5,6),則n=(  )
A、1,6B、2,5
C、3,4D、2,3,4,5

查看答案和解析>>

同步練習冊答案