10.若△ABC的三條邊a、b、c滿足(a+b):(b+c):(c+a)=7:9:10,則△ABC( 。
A.一定是銳角三角形
B.一定是直角三角形
C.一定是鈍角三角形
D.可能是銳角三角形也可能是鈍角三角形

分析 不妨設(shè)a+b=7,則b+c=9,c+a=10,求出a、b、c的值,再利用余弦定理求出最大角的余弦值,從而得出結(jié)論.

解答 解:∵(a+b):(b+c):(c+a)=7:9:10,不妨設(shè)a+b=7,則b+c=9,c+a=10,
求得 a=4,b=3,c=6.
再利用余弦定理可得cosC=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=-$\frac{11}{24}$<0,故C為鈍角,
故選:C.

點(diǎn)評(píng) 本題主要考查余弦定理的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)k是一個(gè)正整數(shù),$(1+\frac{x}{k}{)^4}$的展開式中x3的系數(shù)為$\frac{1}{16}$,記函數(shù)y=x2與y=kx的圖象所圍成的陰影部分為S,任取x∈[0,4],y∈[0,16],則點(diǎn)(x,y)恰好落在陰影區(qū)域S內(nèi)的概率是( 。
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若關(guān)于x的不等式3-|x-a|>x2至少有一個(gè)負(fù)數(shù)解,則實(shí)數(shù)a的取值范圍是(-$\frac{13}{4}$,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.${(\sqrt{2x}+\frac{1}{x^2})^n}$展開式中只有第六項(xiàng)二項(xiàng)式系數(shù)最大,則展開式中的常數(shù)項(xiàng)是720.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.二項(xiàng)式(2x-$\frac{1}{\sqrt{x}}$)n展開式中的第5項(xiàng)為常數(shù)項(xiàng),則展開式中各項(xiàng)的二項(xiàng)式系數(shù)之和為64.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)函數(shù)f(x)=|$\frac{2}{x}$-ax-b|(a,b∈R),若對(duì)任意的正實(shí)數(shù)a和實(shí)數(shù)b,總存在x0∈[1,2],使得f(x0)≥m,則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,0]B.(-∞,$\frac{1}{2}$]C.(-∞,1]D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在[0,2π]上,sin$\frac{4}{3}$π=sin(π+$\frac{π}{3}$)=sin(2π-$\frac{2}{3}$π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=ex-1+x-2(e為自然對(duì)數(shù)的底數(shù)),g(x)=x2-ax-a+3,若存在實(shí)數(shù)x1,x2,使得f(x1)=g(x2)=0,且|x1-x2|≤1,則實(shí)數(shù)a的取值范圍是( 。
A.[2,3]B.[1,2]C.[2,$\frac{7}{3}$]D.[$\frac{7}{3}$,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知cos(α-$\frac{π}{6}$)+sinα=$\frac{4}{5}$$\sqrt{3}$,求sin(α+$\frac{7π}{6}$)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案