19.已知函數(shù)f(x)=ex-1+x-2(e為自然對數(shù)的底數(shù)),g(x)=x2-ax-a+3,若存在實數(shù)x1,x2,使得f(x1)=g(x2)=0,且|x1-x2|≤1,則實數(shù)a的取值范圍是( 。
A.[2,3]B.[1,2]C.[2,$\frac{7}{3}$]D.[$\frac{7}{3}$,3]

分析 求出函數(shù)f(x)的導數(shù),可得f(x)遞增,解得f(x)=0的解為1,由題意可得x2-ax-a+3=0在0≤x≤2有解,
即有a=$\frac{{x}^{2}+3}{x+1}$=(x+1)+$\frac{4}{x+1}$-2在0≤x≤2有解,求得(x+1)+$\frac{4}{x+1}$-2的范圍,即可得到a的范圍.

解答 解:函數(shù)f(x)=ex-1+x-2的導數(shù)為f′(x)=ex-1+1>0,
f(x)在R上遞增,由f(1)=0,可得f(x1)=0,解得x1=1,
存在實數(shù)x1,x2,使得f(x1)=g(x2)=0.且|x1-x2|≤1,
即為g(x2)=0且|1-x2|≤1,
即x2-ax-a+3=0在0≤x≤2有解,
即有a=$\frac{{x}^{2}+3}{x+1}$=(x+1)+$\frac{4}{x+1}$-2在0≤x≤2有解,
令t=x+1(1≤t≤3),則t+$\frac{4}{t}$-2在[1,2]遞減,[2,3]遞增,
可得最小值為2,最大值為3,
則a的取值范圍是[2,3].
故答案為:[2,3].

點評 本題考查導數(shù)的運用:求單調(diào)性和極值、最值,考查參數(shù)分離法和運算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,AB⊥AD,AD∥BC,側(cè)棱PA⊥底面ABCD,且PA=AB=BC=2,AD=1.
(Ⅰ)試作出平面PAB與平面PCD的交線EP(不需要說明畫法和理由);
(Ⅱ)求證:直線EP⊥平面PBC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若△ABC的三條邊a、b、c滿足(a+b):(b+c):(c+a)=7:9:10,則△ABC( 。
A.一定是銳角三角形
B.一定是直角三角形
C.一定是鈍角三角形
D.可能是銳角三角形也可能是鈍角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在△ABC中,∠A為鈍角,且sinA=$\frac{4}{5}$,c=5,b=4,求a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1+(\frac{1}{2})^{x},x<0}\\{\sqrt{x}+1,x≥0}\end{array}\right.$,則“x2-x-2>0”是“f(x)>3”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.下列函數(shù)為偶函數(shù)的是( 。
A.f(x)=x2-5B.f(x)=xcosxC.f(x)=exD.f(x)=lgx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知A(1,-2),B(2,1),C(3,2),D(-2,3)
(1)求與$\overrightarrow{AB}$反向的單位向量;
(2)若$\overrightarrow{BE}$=(-2,5),求點E的坐標;
(3)若$\overrightarrow{a}$=$\overrightarrow{AC}$-$\overrightarrow{BD}$,求|$\overrightarrow{a}$|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知$\overrightarrow{i}$、$\overrightarrow{j}$均為單位向量,且互相垂直,若向量$\overrightarrow{a}$=3$\overrightarrow{i}$+2$\overrightarrow{j}$,$\overrightarrow$=-$\overrightarrow{j}$,求向量2$\overrightarrow$-$\overrightarrow{a}$的模.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若函教f(x)=log2(x2-ax+6)在(-∞,2]是減函數(shù),則實數(shù)a的取值范圍是( 。
A.(-∞,4]B.[4,+∞)C.[4,5)D.[4,5]

查看答案和解析>>

同步練習冊答案