【題目】江蘇省淮陰中學(xué)科技興趣小組在計(jì)算機(jī)上模擬航天器變軌返回試驗(yàn).設(shè)計(jì)方案如圖,航天器運(yùn)行(按順時(shí)針方向)的軌跡方程為,變軌(即航天器運(yùn)行軌跡由橢圓變?yōu)閽佄锞)后返回的軌跡是以軸為對(duì)稱軸、為頂點(diǎn)的拋物線的實(shí)線部分,降落點(diǎn)為.觀測(cè)點(diǎn)同時(shí)跟蹤航天器,試問:當(dāng)航天器在軸上方時(shí),觀測(cè)點(diǎn),測(cè)得離航天器的距離分別為多少時(shí),應(yīng)向航天器發(fā)出變軌指令?(變軌指令發(fā)出時(shí)航天器立即變軌)。
【答案】當(dāng)觀測(cè)點(diǎn)A,B測(cè)得AC,BC的距離分別為2、4時(shí),應(yīng)向航天器發(fā)出變軌指令
【解析】
設(shè)出拋物線的方程,根據(jù)點(diǎn)坐標(biāo)求得拋物線方程.聯(lián)立拋物線的方程和橢圓方程,求得點(diǎn)坐標(biāo),由此求得的距離.
解:設(shè)曲線方程為,由題意可知,,∴,
∴曲線方程為
解得
解得y=4或y=-(不合題意,舍去),∴y=4,
將代入(1)得x=6或x=-6(不合題意,舍去).∴C點(diǎn)的坐標(biāo)為(6,4)
|AC|=2,|BC|=4
答:當(dāng)觀測(cè)點(diǎn)A,B測(cè)得AC,BC的距離分別為2、4時(shí),應(yīng)向航天器發(fā)出變軌指令,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某支教隊(duì)有8名老師,現(xiàn)欲從中隨機(jī)選出2名老師參加志愿活動(dòng),
(1)若規(guī)定選出的至少有一名女老師,則共有18種不同的需安排方案,試求該支教隊(duì)男、女老師的人數(shù);
(2)在(1)的條件下,記為選出的2位老師中女老師的人數(shù),寫出的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)在內(nèi)有極值,求實(shí)數(shù)的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,對(duì)任意,,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)="xln" x–ax2+(2a–1)x,aR.
(Ⅰ)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;
(Ⅱ)已知f(x)在x=1處取得極大值.求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)且是的導(dǎo)函數(shù),則過曲線上一點(diǎn)的切線方程為
A. B.
C. 或D. 或
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,已知側(cè)面,,,,點(diǎn)在棱上.
(1)求的長(zhǎng),并證明平面;
(2)若,試確定的值,使得到平面的距離為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),是函數(shù)的圖像上任意不同的兩點(diǎn),依據(jù)圖像可知,線段總是位于兩點(diǎn)之間函數(shù)圖像的上方,因此有結(jié)論成立,運(yùn)用類比的思想方法可知,若點(diǎn),是函數(shù)的圖像上任意不同的兩點(diǎn),則類似地有_________成立.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com