3.求下列函數(shù)周期:
(1)y=|sinx|+sinx
(2)y=2sin(2x+$\frac{π}{3}$),x∈[-$\frac{π}{6}$,$\frac{π}{6}$]
(3)y=$\frac{cosx-2}{cosx-1}$
(4)y=2cos(2x+$\frac{π}{3}$),x∈R.

分析 (1)函數(shù)y=|sinx|和y=sinx的周期分別為π和2π,可得函數(shù)周期為2π;
(2)函數(shù)定義域?yàn)閇-$\frac{π}{6}$,$\frac{π}{6}$],不滿足周期函數(shù)的定義;
(3)函數(shù)的周期為2π;
(4)由周期公式可得.

解答 解:(1)函數(shù)y=|sinx|的周期為π,函數(shù)y=sinx的周期為2π,
∴y=|sinx|+sinx的周期為2π;
(2)函數(shù)定義域?yàn)閇-$\frac{π}{6}$,$\frac{π}{6}$],不滿足周期函數(shù)的定義,
故原函數(shù)無周期;
(3)函數(shù)y=$\frac{cosx-2}{cosx-1}$每隔2π重復(fù)出現(xiàn)相同的函數(shù)值,
∴函數(shù)的周期為2π;
(4)由周期公式可得T=$\frac{2π}{2}$=π

點(diǎn)評(píng) 本題考查三角函數(shù)的周期性,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.過點(diǎn)(0,-2)的直線l與圓x2+y2=1有公共點(diǎn),則直線l的傾斜角的取值范圍是( 。
A.$[{\frac{π}{3},\frac{2π}{3}}]$B.$[{\frac{π}{6},\frac{5π}{6}}]$C.$({0,\frac{π}{3}}]∪[{\frac{2π}{3},π})$D.$[{\frac{π}{3},\frac{π}{2}})∪({\frac{π}{2},\frac{2π}{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某校高二(1)班有男同學(xué)35人,女同學(xué)21人,現(xiàn)采取分層抽樣的方法從同學(xué)中選取16人參加課外手工興趣班,則男同學(xué)被選取的人數(shù)為(  )
A.6B.8C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,A(2,-1),AB邊上的中線CM所在直線方程為3x+2y+1=0.角B的平分線所在直線BT的方程為x-y+2=0.
(1)求頂點(diǎn)B的坐標(biāo);
(2)求直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=2sin($\frac{x}{4}$+2),如果存在實(shí)數(shù)x1,x2使得對(duì)任意的實(shí)數(shù),都有f(x1)≤f(x2),則|x1-x2|的最小值是4π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.為了了解學(xué)生平均每天零花錢的數(shù)量(錢數(shù)取整數(shù)元),以便引導(dǎo)學(xué)生樹立正確的消費(fèi)觀,某校從高一年級(jí)1000名學(xué)生中隨機(jī)抽取100名進(jìn)行了調(diào)查,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),據(jù)此估計(jì)高一年級(jí)每天零花錢在[6,14)內(nèi)的學(xué)生數(shù)為( 。
A.780B.680C.648D.460

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.己知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F,右頂點(diǎn)和上頂點(diǎn)分別為A、B,過點(diǎn)F作x軸的垂線與橢圓在第一象限于點(diǎn)P,直線OP交AB于點(diǎn)Q,若|OQ|=|AQ|,則橢圓的離心率為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{5}-1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若$\overrightarrow{a}$=(2,-1),$\overrightarrow$=(x,2)且$\overrightarrow{a}$⊥($\overrightarrow{a}$+$\overrightarrow$),則x等于( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{3}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知點(diǎn)A(-1,1),B(3,3)是圓C的一條直徑的兩個(gè)端點(diǎn),又點(diǎn)M在圓C上運(yùn)動(dòng),點(diǎn)N(4,-2),求線段MN的中點(diǎn)P的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案