函數(shù)f(x)=lnx的圖象在點x=1處的切線方程是
 
考點:橢圓的簡單性質(zhì)
專題:計算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:x=1代入解析式求出切點的坐標(biāo),再求出函數(shù)的導(dǎo)數(shù)后代入求出f′(1),即為所求的切線斜率,再代入點斜式進(jìn)行整理即可.
解答: 解:把x=1代入f(x)=lnx得,f(1)=ln1=0,
∴切點的坐標(biāo)為:(1,0),
由f′(x)=(lnx)′=
1
x
,得在點x=1處的切線斜率k=f′(1)=1,
∴在點x=1處的切線方程為:y=x-1,
故答案為:y=x-1.
點評:本題考查了導(dǎo)數(shù)的幾何意義和直線點斜式方程,關(guān)鍵求出某點處切線的斜率即該點處的導(dǎo)數(shù)值,還有切點的坐標(biāo),利用切點在曲線上和切線上.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,b>0,求證:
a+b
2
-
ab
a2+b2
2
-
a+b
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四面體ABCD中,E,F(xiàn)分別為AB,CD的中點,過EF任作一個平面
α分別與直線BC,AD相交于點G,H,下列判斷中:
①對于任意的平面α,都有S△EFG=S△EFH;
②存在一個平面α0,使得點G在線段BC上,點H在線段AD的延長線上;
③對于任意的平面α,都有直線GF,EH,BD相交于同一點或相互平行;
④對于任意的平面α,當(dāng)G,H在線段BC,AD上時,幾何體AC-EGFH的體積是一個定值.
其中正確的序號是(  )
A、①③④B、③④
C、②③D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公比不為1的等比數(shù)列{an}的首項a1=
1
2
,前n項和為Sn,且a4+S4,a5+S5,a6+S6成等差數(shù)列.
(1)求等比數(shù)列{an}的通項公式;
(2)當(dāng)n≥3時,求數(shù)列{|3+log2an|}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-mx(m∈R),e為自然對數(shù)的底數(shù).
(1)討論函數(shù)f(x)在區(qū)間(e,+∞)上的單調(diào)性,并求出極值.
(2)若函數(shù)f(x)有兩個不同的零點x1,x2,求證:x1x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
x-y+2≥0
x+y-4≥0
2x-y-5≤0
,
(1)求z=x+2y的最大和最小值.
(2)求z=
y
x
的取值范圍.
(3)求z=x2+y2的最大和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=logax(a>0,且a≠1)的圖象如圖所示,則下列函數(shù)圖象正確的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

i是虛數(shù)單位,復(fù)數(shù)(1-i)•(1+i)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:(1)(lg2)2+lg2×lg50+lg25;
(2)2log2
1
4
+(
9
16
)
1
2
+lg20-lg2-(log32)(log23)+(
2
-1)lg1

查看答案和解析>>

同步練習(xí)冊答案