在直角坐標(biāo)系中,參數(shù)方程為的直線,被以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,極坐標(biāo)方程為的曲線所截,求截得的弦長.

解析試題分析:參數(shù)方程為表示的直線是過點(diǎn),傾斜角為,極坐標(biāo)方程為表示的曲線為圓
試題解析:由題意知,直線的傾斜角為,并過點(diǎn)(2,0);曲線是以(1,0)為圓心、半徑為1的圓,且圓也過點(diǎn)(2,0);設(shè)直線與圓的另一個(gè)交點(diǎn)為,在中,.    10′
考點(diǎn):參數(shù)方程與極坐標(biāo)方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系取相同單位長度.已知曲線過點(diǎn)的直線的參數(shù)方程為(t為參數(shù)). (1)求曲線C與直線 的普通方程;(2)設(shè)曲線C經(jīng)過伸縮變換得到曲線,若直線 與曲線相切,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線C1的參數(shù)方程是 (φ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρ=2.正方形ABCD的頂點(diǎn)都在C2上,且A,B,CD依逆時(shí)針次序排列,點(diǎn)A的極坐標(biāo)為,
(1)求點(diǎn)AB,C,D的直角坐標(biāo);
(2)設(shè)PC1上任意一點(diǎn),求|PA|2+|PB|2+|PC|2+|PD|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓,直線,以O(shè)為極點(diǎn),x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系.
(1)將圓C和直線方程化為極坐標(biāo)方程;
(2)P是上的點(diǎn),射線OP交圓C于點(diǎn)R,又點(diǎn)Q在OP上且滿足,當(dāng)點(diǎn)P在上移動(dòng)時(shí),求點(diǎn)Q軌跡的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知極坐標(biāo)的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與軸的正半軸重合,且長度單位相同.直線的極坐標(biāo)方程為:,點(diǎn),參數(shù)
(Ⅰ)求點(diǎn)軌跡的直角坐標(biāo)方程;(Ⅱ)求點(diǎn)到直線距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)的極坐標(biāo)為,曲線的參數(shù)方程為為參數(shù)).
(1)求直線的直角坐標(biāo)方程;
(2)求點(diǎn)到曲線上的點(diǎn)的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建坐標(biāo)系,已知曲線,已知過點(diǎn)的直線的參數(shù)方程為 (為參數(shù)),直線與曲線分別交于兩點(diǎn).
(Ⅰ)寫出曲線和直線的普通方程;
(Ⅱ)若成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在極坐標(biāo)系中,求圓上的點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

曲線的參數(shù)方程為為參數(shù)),將曲線上所有點(diǎn)的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)伸長為原來的倍,得到曲線.
(Ⅰ)求曲線的普通方程;
(Ⅱ)已知點(diǎn),曲線軸負(fù)半軸交于點(diǎn),為曲線上任意一點(diǎn), 求
的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案