【題目】某校高二(20)班共50名學生,在期中考試中,每位同學的數(shù)學考試分數(shù)都在區(qū)間內(nèi),將該班所有同學的考試分數(shù)分為七個組:,,,,,,繪制出頻率分布直方圖如圖所示.

(1)根據(jù)頻率分布直方圖,估計這次考試學生成績的中位數(shù)和平均數(shù);

(2)已知成績?yōu)?04分或105分的同學共有3人,現(xiàn)從成績在中的同學中任選2人,則至少有1人成績不低于106分的概率為多少?(每位同學的成績都為整數(shù))

【答案】(1)中位數(shù)為114,平均數(shù)為114.32;(2)

【解析】

(Ⅰ)根據(jù)中位數(shù)的兩邊概率相等,即可求出中位數(shù);由每組的中間值乘以該組的頻率再求和即可求出平均數(shù);

(Ⅱ)先由題意求出成績在的人數(shù),對成績?yōu)?04分或105分的同學和成績?yōu)?06分、107分的學生編號,用列舉法結(jié)合古典概型的概率計算公式即可求出結(jié)果.

(Ⅰ)由頻率分布直方圖,知,所以學生成績的中位數(shù)為.

平均數(shù)為 .

(Ⅱ)因為,所以成績在之間的學生共有6人.

設成績?yōu)?04分、105分的學生為,,,成績?yōu)?06分、107分的學生為,,.從6人中任選2人,共有,,,,,,,,,15種情況,其中恰好2人都不低于106分的有,,共3種情況,其中有1人不低于106分1人低于106分的有,,,,,,,共9人,所以從成績在中的同學中任選2人,則至少有1人成績都不低于106分的概率為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)已知fx)的圖象關于原點對稱,求實數(shù)的值;

2)若,已知常數(shù)滿足:對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=﹣alnx+(a+1)x﹣(a>0).

(1)討論函數(shù)f(x)的單調(diào)性;

(2)若f(x)≥﹣+ax+b恒成立,求a時,實數(shù)b的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為保護農(nóng)民種糧收益,促進糧食生產(chǎn),確保國家糧食安全,調(diào)動廣大農(nóng)民糧食生產(chǎn)的積極性,從2004年開始,國家實施了對種糧農(nóng)民直接補貼.通過對2014~2018年的數(shù)據(jù)進行調(diào)查,發(fā)現(xiàn)某地區(qū)發(fā)放糧食補貼額(億元)與該地區(qū)糧食產(chǎn)量(萬億噸)之間存在著線性相關關系.統(tǒng)計數(shù)據(jù)如下表:

年份

2014年

2015年

2016年

2017年

2018年

補貼額億元

9

10

12

11

8

糧食產(chǎn)量萬億噸

23

25

30

26

21

(1)請根據(jù)如表所給的數(shù)據(jù),求出關于的線性回歸直線方程;

(2)通過對該地區(qū)糧食產(chǎn)量的分析研究,計劃2019年在該地區(qū)發(fā)放糧食補貼額7億元,請根據(jù)(1)中所得的線性回歸直線方程,預測2019年該地區(qū)的糧食產(chǎn)量.

(參考公式:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的右焦點為,為圓與橢圓的一個公共點,.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)如圖,過作直線與橢圓交于,兩點,點為點關于軸的對稱點.

(1)求證:

(2)試問過,的直線是否過定點?若是,請求出該定點;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)求函數(shù)在點處的切線方程;

(2)求函數(shù)的單調(diào)區(qū)間;

(3) 求證:當時,恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),則下列命題中正確的個數(shù)是(

①當時,函數(shù)上有最小值;②當時,函數(shù)是單調(diào)增函數(shù);③若,則;④方程可能有三個實數(shù)根.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線為參數(shù)),曲線為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立直角坐標系.

(1)求曲線的極坐標方程,直線的普通方程;

(2)把直線向左平移一個單位得到直線,設與曲線的交點為, , 為曲線上任意一點,求面積的最大值.

查看答案和解析>>

同步練習冊答案