已知函數(shù)f(x)=alnx+
2a2
x
+x(a>0).若曲線y=f(x)在點(1,f(1))處的切線與直線x-2y=0垂直,
(Ⅰ)求實數(shù)a的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.
考點:利用導數(shù)研究函數(shù)的單調(diào)性
專題:導數(shù)的概念及應用
分析:(1)先求出f′x)=
a
x
-
2a2
x2
+1,得f′(1)=-2,從而求出a的值,
(2)先求出函數(shù)的導數(shù),解不等式從而求出單調(diào)區(qū)間.
解答: 解:(Ⅰ)∵f′x)=
a
x
-
2a2
x2
+1,
∴f′(1)=-2,
∴2a2-a-3=0,
∵a>0,
∴a=
3
2

(Ⅱ)∵f′(x)=
(2x-3)(x+3)
2x2
,
令f′(x)>0,解得:x>
3
2
,x<-3(舍),
令f′(x)<0,解得:0<x<
3
2

∴f(x)在(0,
3
2
)遞減,在(
3
2
,+∞)遞增.
點評:本題考察了函數(shù)的單調(diào)性,導數(shù)的應用,切線方程,是一道基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=
1
4
,an=
an-1
(-1)nan-1-2
(n≥2,n∈N).
(Ⅰ)試判斷數(shù)列{
1
an
+(-1)n}是否為等比數(shù)列,并說明理由;
(Ⅱ)設(shè)cn=ansin
(2n-1)π
2
,數(shù)列{cn}的前n項和為Tn,求證:對任意的n∈N*,Tn
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=
x2+1
+
(4-x)2+4
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+2ax+2,x∈[-5,5],求函數(shù)f(x)的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)x=
1
3
-2
,y=
1
3
+2
,求代數(shù)式
x2+xy+y2
x+y
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={x|x=a2+1,a∈N},集合P={y|y=b2+2b+2,b∈N},判斷M與P是否相等.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex
(Ⅰ)當x>0時,設(shè)g(x)=f(x)-(a+1)x(a∈R).討論函數(shù)g(x)的單調(diào)性;
(Ⅱ)證明當x∈[
1
2
,1]時,f(x)<x2+x+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由數(shù)字1,2,3組成的n位數(shù),1,2,3每個至少出現(xiàn)一次,這樣的n位數(shù)共有多少個?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足a3=5,a5-2a2=3,又等比數(shù)列{bn}中,b1=3且公比q=3.
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)若cn=an+bn,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

同步練習冊答案