已知tanθ=2,則
sinθ
sin3θ+cos3θ
=
 
考點(diǎn):三角函數(shù)的化簡(jiǎn)求值
專題:三角函數(shù)的求值
分析:直接利用已知條件化簡(jiǎn)所求表達(dá)式,表達(dá)式轉(zhuǎn)化為正切函數(shù),然后求解即可.
解答: 解:tanθ=2,
sinθ
sin3θ+cos3θ
=
sinθ(sin2θ+cos2θ)
sin3θ+cos3θ
=
tan3θ+tanθ
tan3θ+1
=
23+2
23+1
=
10
9

故答案為:
10
9
點(diǎn)評(píng):本題考查三角函數(shù)化簡(jiǎn)求值,同角三角函數(shù)的基本關(guān)系式的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

判斷下列各式的符號(hào):
(1)sin1190°cos(-258°)tan590°
(2)tan(-668°)cos308°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,∠ABC=90°,CB=1,CA=2,AA1=
6
,點(diǎn)M是CC1的中點(diǎn),求證:AM⊥BA1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tan2θ=-2
2
,π<2θ<2π,求
2cos2
θ
2
-sinθ-1
2
sin(θ+
4
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=asinx+bcosx,非零向量
m
=(a,b),則稱
m
為f(x)的“相伴向量”,f(x)為
m
的“相伴函數(shù)”
(Ⅰ)已知函數(shù)f(x)=(sinωx+cosωx)2+2cos2ωx-2(ω≥0)的最小正周期為2π,求f(x)的“相伴向量”
m
的模;
(Ⅱ)向量
n
=(n,1)
的“相伴函數(shù)”為g(x),且
n
與(1)中
m
滿足
n
m
=1+
3
.將g(x)圖象上所有點(diǎn)橫坐標(biāo)伸長(zhǎng)為原來(lái)2倍,再將圖象向左平移
3
個(gè)單位長(zhǎng)度,得到函數(shù)h(x),若h(2α+
π
3
)=
6
5
,α∈(0,
π
2
)
,求sinα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
x+1
+2
x-1
的最小值為(  )
A、1
B、
2
C、2
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線的極坐標(biāo)方程ρ=4sinθ化為直角坐標(biāo)為( 。
A、x2+(y+2)2=4
B、x2+(y-2)2=4
C、(x-2)2+y2=4
D、(x+2)2+y2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正四棱錐(頂點(diǎn)在底面的射影是底面正方形的中心)的體積為12,底面對(duì)角線的長(zhǎng)為2
6
,則側(cè)面與底面所成的二面角為( 。
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=|x2-9|+x2+kx,若關(guān)于x的方程f(x)=0在(0,4)上有兩個(gè)實(shí)數(shù)解,則k的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案