【題目】在平面直角坐標(biāo)平面中, 的兩個(gè)頂點(diǎn)為,平面內(nèi)兩點(diǎn)、同時(shí)滿足:①;②;③

(1)求頂點(diǎn)的軌跡的方程;

(2)過點(diǎn)作兩條互相垂直的直線,直線與點(diǎn)的軌跡相交弦分別為,設(shè)弦的中點(diǎn)分別為

①求四邊形的面積的最小值;

②試問:直線是否恒過一個(gè)定點(diǎn)?若過定點(diǎn),請(qǐng)求出該定點(diǎn),若不過定點(diǎn),請(qǐng)說明理由.

【答案】(1);(2)①的最小值的,②直線恒過定點(diǎn)

【解析】試題分析:(1)由可得的重心,設(shè),則,再由,可得的外心, 軸上,再由,可得結(jié)合即可求得頂點(diǎn)的軌跡的方程;(2恰為的右焦點(diǎn).當(dāng)直線, 的斜率存在且不為0時(shí),設(shè)直線的方程為.聯(lián)立直線方程與橢圓方程,化為關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系求得的縱坐標(biāo)得到和與積.根據(jù)焦半徑公式得、,代入四邊形面積公式,再由基本不等式求得四邊形面積的最小值;根據(jù)中點(diǎn)坐標(biāo)公式得的坐標(biāo),得到直線的方程,化簡(jiǎn)整理令解得值,可得直線恒過定點(diǎn);當(dāng)直線, 有一條直線的斜率不存在時(shí),另一條直線的斜率為0,直線即為軸,過點(diǎn)(.

試題解析:(1)∵

∴由①知

的重心

設(shè),則,由②知的外心

軸上由③知,由,得,化簡(jiǎn)整理得:

(2)解: 恰為的右焦點(diǎn),

①當(dāng)直線的斜率存且不為0時(shí),設(shè)直線的方程為,

設(shè),

①根據(jù)焦半徑公式得,

,

所以,同理

,

當(dāng),即時(shí)取等號(hào).

②根據(jù)中點(diǎn)坐標(biāo)公式得,同理可求得

則直線的斜率為,

∴直線的方程為

整理化簡(jiǎn)得,

,解得

∴直線恒過定點(diǎn),

②當(dāng)直線有一條直線斜率不存在時(shí),另一條斜率一定為0,直線即為軸,過點(diǎn),

綜上, 的最小值的,直線恒過定點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)設(shè),若有兩個(gè)極值點(diǎn),且不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公差大于零的等差數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足a3a4=117,a2+a5=22.
(1)求通項(xiàng)an;
(2)若數(shù)列{bn}滿足bn= ,是否存在非零實(shí)數(shù)c使得{bn}為等差數(shù)列?若存在,求出c的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一條生產(chǎn)線上按同樣的方式每隔30分鐘取一件產(chǎn)品,共取了n件,測(cè)得其產(chǎn)品尺寸后,畫得其頻率分布直方圖如圖所示,已知尺寸在[15,45)內(nèi)的頻數(shù)為46.
(1)該抽樣方法是什么方法?
(2)求n的值;
(3)求尺寸在[20,25)內(nèi)的產(chǎn)品的件數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為, 為參數(shù)),在以為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心在極軸上,且經(jīng)過極點(diǎn)的圓.已知曲線上的點(diǎn)對(duì)應(yīng)的參數(shù),射線與曲線交于點(diǎn).

(Ⅰ)求曲線的直角坐標(biāo)方程;

(Ⅱ)若點(diǎn), 在曲線上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市出租車的計(jì)價(jià)標(biāo)準(zhǔn)是:4km以內(nèi)(含4km)10元,超過4km且不超過18km的部分1.2元/km,超過18km的部分1.8元/km,不計(jì)等待時(shí)間的費(fèi)用.
(1)如果某人乘車行駛了10km,他要付多少車費(fèi)?
(2)試建立車費(fèi)y(元)與行車?yán)锍蘹(km)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)證明f(x)是奇函數(shù);
(2)判斷f(x)的單調(diào)性,并用定義證明
(3)求f(x)在[1,2]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為),上一點(diǎn),以為邊作等邊三角形,且、、三點(diǎn)按逆時(shí)針方向排列.

(Ⅰ)當(dāng)點(diǎn)上運(yùn)動(dòng)時(shí),求點(diǎn)運(yùn)動(dòng)軌跡的直角坐標(biāo)方程;

(Ⅱ)若曲線 ,經(jīng)過伸縮變換得到曲線,試判斷點(diǎn)的軌跡與曲線是否有交點(diǎn),如果有,請(qǐng)求出交點(diǎn)的直角坐標(biāo),沒有則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)古代數(shù)學(xué)家劉徽在《九章算術(shù)注》中,稱一個(gè)正方體內(nèi)兩個(gè)互相垂直的內(nèi)切圓柱所圍成的立體為“牟合方蓋”,如圖(1)(2),劉徽未能求得牟合方蓋的體積,直言“欲陋形措意,懼失正理”,不得不說“敢不闕疑,以俟能言者”.約200年后,祖沖之的兒子祖暅提出“冪勢(shì)既同,則積不容異”,后世稱為祖暅原理,即:兩等高立體,若在每一等高處的截面積都相等,則兩立體體積相等.如圖(3)(4),祖暅利用八分之一正方體去掉八分之一牟合方蓋后的幾何體與長(zhǎng)寬高皆為八分之一正方體的邊長(zhǎng)的倒四棱錐“等冪等積”,計(jì)算出牟合方蓋的體積,據(jù)此可知,牟合方蓋的體積與其外切正方體的體積之比為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案