已知
(1)當(dāng)時(shí),求的極值;
(2)當(dāng)時(shí),討論的單調(diào)性;
(3)若對任意的,恒有成立,求實(shí)數(shù)的取值范圍.
(1)極大值,極小值1;(2)參考解析;(3)
【解析】
試題分析:(1)由已知,求函數(shù)導(dǎo)函數(shù),又.即可得到函數(shù)的極值點(diǎn),從而求得極值.
(2)當(dāng)時(shí), 的導(dǎo)數(shù)為零時(shí),得到兩個(gè)零點(diǎn).所以要討論的大小,從而確定函數(shù)的單調(diào)性.
(3)因?yàn)閷θ我獾?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2014111719122083903169/SYS201411171912319489656430_DA/SYS201411171912319489656430_DA.010.png">,恒有成立.即求出的最大值.所以恒成立.再利用分離變量,即可得結(jié)論.
試題解析:(1)當(dāng)a=1時(shí)可知在上是增函數(shù),在上是減函數(shù). 在 上是增函數(shù)
∴的極大值為,的極小值.
①當(dāng)時(shí),在和上是增函數(shù),在上是減函數(shù)
②當(dāng)時(shí),在上是增函數(shù);
③當(dāng)時(shí),在和上是增函數(shù),在上是減函數(shù)
(3)當(dāng)時(shí),由(2)可知在上是增函數(shù),
∴
由對任意的a∈(2, 4),x1, x2∈[1, 3]恒成立,
∴
即對任意恒成立,
即對任意恒成立,
由于,∴.
考點(diǎn):1.函數(shù)的極值.2.函數(shù)的單調(diào)性.3.函數(shù)恒成立的問題.4.構(gòu)造新函數(shù)利用函數(shù)的最值解決恒成立的問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省南昌市高三第二次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
一幾何體的三視圖如圖,該幾何體的頂點(diǎn)都在球的球面上,球的表面積是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省高三聯(lián)合考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
某幾何體的三視圖如圖所示,當(dāng)xy最大時(shí),該幾何體的體積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省上饒市高三第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
已知某個(gè)幾何體的三視圖如下,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個(gè)幾何體的體積是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省上饒市高三第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
某小賣部銷售一品牌飲料的零售價(jià)x(元/評)與銷售量y(瓶)的關(guān)系統(tǒng)計(jì)如下:
零售價(jià)x(元/瓶) | 3.0 | 3.2 | 3.4 | 3.6 | 3.8 | 4.0 |
銷量y(瓶) | 50 | 44 | 43 | 40 | 35 | 28 |
已知的關(guān)系符合線性回歸方程,其中.當(dāng)單價(jià)為4.2元時(shí),估計(jì)該小賣部銷售這種品牌飲料的銷量為( )
A.20 B.22 C.24 D.26
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省上饒市高三第二次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
(1)求的最小正周期和單調(diào)遞增區(qū)間;
(2)已知是三邊長,且,的面積.求角及的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西省上饒市高三第二次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
過拋物線的焦點(diǎn)F作直線AB,CD與拋物線交于A、B、C、D四點(diǎn),且,則的最大等于 ( )
A.-4 B.-16 C.4 D.-8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省高三百校聯(lián)合調(diào)研測試(一)數(shù)學(xué)試卷(解析版) 題型:填空題
已知圓,點(diǎn)在直線上,若過點(diǎn)存在直線與圓交于、兩點(diǎn),且點(diǎn)為的中點(diǎn),則點(diǎn)橫坐標(biāo)的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省連云港市高三3月第二次調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在平面直角坐標(biāo)系中,已知,,是橢圓上不同的三點(diǎn),,,在第三象限,線段的中點(diǎn)在直線上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求點(diǎn)C的坐標(biāo);
(3)設(shè)動(dòng)點(diǎn)在橢圓上(異于點(diǎn),,)且直線PB,PC分別交直線OA于,兩點(diǎn),證明為定值并求出該定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com