【題目】已知長方形中,,,現(xiàn)將長方形沿對角線折起,使,得到一個四面體,如圖所示.
(1)試問:在折疊的過程中,異面直線與能否垂直?若能垂直,求出相應(yīng)的的值;若不垂直,請說明理由;
(2)當(dāng)四面體體積最大時,求二面角的余弦值.
【答案】(1)1;(2).
【解析】
(1)若AB⊥CD,得AB⊥面ACD,由于AB⊥AC.,所以AB2+a2=BC,解得a2=1,成立;(2)四面體A﹣BCD體積最大時面ABD⊥面BCD,以A為原點,在平面ACD中過O作BD的垂線為x軸,OD為y軸,OA為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A﹣CD﹣B的余弦值.
(1)若AB⊥CD,因為AB⊥AD,AD∩CD=D,
所以AB⊥面ACDAB⊥AC.
由于AB=1, AD=BC= ,AC=,
由于AB⊥AC.,所以AB2+a2=BC,
所以12+a2=()2a=1,
所以在折疊的過程中,異面直線AB與CD可以垂直,此時的值為1
(2)要使四面體A-BCD體積最大,因為△BCD面積為定值,
所以只需三棱錐A-BCD的高最大即可,此時面ABD⊥面BCD.
過A作AO⊥BD于O,則AO⊥面BCD,
以O為原點建立空間直角坐標(biāo)系 (如圖),
則易知,
顯然,面BCD的法向量為 ,
設(shè)面ACD的法向量為n=(x,y,z),
因為
所以,令y=,得n=(1,,2),
故二面角A-CD-B的余弦值即為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. “f(0)”是“函數(shù)f(x)是奇函數(shù)”的充要條件
B. 若p:,,則:,
C. “若,則”的否命題是“若,則”
D. 若為假命題,則p,q均為假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·全國卷Ⅲ文,18)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.
(1)估計六月份這種酸奶一天的需求量不超過300瓶的概率;
(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元).當(dāng)六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】楊輝,字謙光,南宋時期杭州人.在他1261年所著的《詳解九章算法》一書中,輯錄了如圖所示的三角形數(shù)表,稱之為“開方作法本源”圖,并說明此表引自11世紀(jì)中葉(約公元1050年)賈憲的《釋鎖算術(shù)》,并繪畫了“古法七乘方圖”.故此,楊輝三角又被稱為“賈憲三角”.楊輝三角是一個由數(shù)字排列成的三角形數(shù)表,一般形式如下:
基于上述規(guī)律,可以推測,當(dāng)時,從左往右第22個數(shù)為_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校數(shù)學(xué)老師任教的班級有50名學(xué)生,某次單元測驗成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間為,,,,,
(1)求圖中的值;
(2)從成績不低于80分的同學(xué)中隨機選取3人,該3人中成績在90分以上(含90分)的人數(shù)記為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是和,假設(shè)兩人射擊是否擊中目標(biāo)相互沒有影響,每人每次射擊是否擊中目標(biāo)相互也沒有影響.
(1)求甲、乙兩人各射擊一次均擊中目標(biāo)的概率;
(2)若乙在射擊中出現(xiàn)連續(xù)次未擊中目標(biāo)則會被終止射擊,求乙恰好射擊次后被終止射擊的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是正方形,側(cè)面底面,,分別為,中點,.
(Ⅰ)求證:∥平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在一點,使平面?若存在,指出點的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花圃為提高某品種花苗質(zhì)量,開展技術(shù)創(chuàng)新活動,在A,B實驗地分別用甲、乙方法培育該品種花苗.為觀測其生長情況,分別在A,B試驗地隨機抽選各50株,對每株進行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80及以上的花苗為優(yōu)質(zhì)花苗.
(1)求圖中a的值,并求綜合評分的中位數(shù);
(2)用樣本估計總體,以頻率作為概率,若在A,B兩塊實驗地隨機抽取3棵花苗,求所抽取的花苗中的優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學(xué)期望;
(3)填寫下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān).
優(yōu)質(zhì)花苗 | 非優(yōu)質(zhì)花苗 | 合計 | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合計 |
附:下面的臨界值表僅供參考.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓與過其右焦點F(1,0)的直線交于不同的兩點A,B,線段AB的中點為D,且直線l與直線OD的斜率之積為.
(1)求C的方程;
(2)設(shè)橢圓的左頂點為M,kMA,kMB分別表示直線MA,MB的斜率,求證.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com