若函數(shù)f(x)=x3-ax(a>0)的零點都在區(qū)間[-10,10]上,則使得方程f(x)=1000有正整數(shù)解的實數(shù)a的取值的個數(shù)為________.

3
分析:由題意根據(jù)函數(shù)f(x)=x3-ax(a>0)的零點都在區(qū)間[-10,10]上可得a的范圍,然后對f(x)進(jìn)行求導(dǎo),求出函數(shù)在區(qū)間[-10,10]上的最大值,然后再進(jìn)行判斷.
解答:∵函數(shù)f(x)=x3-ax(a>0)的零點都在區(qū)間[-10,10]上,又f(x)=x3-ax=x(x2-a)=0,令f(x)=0,∴x=0,或x=±
函數(shù)f(x)=x3-ax(a>0)的零點都在區(qū)間[-10,10]上,∴≤10,∴a≤100.
∵f′(x)=3x2-a,令f′(x)=0,解得 x=±
當(dāng)x<-,或 x>時,f′(x)>0,函數(shù)f(x)是增函數(shù).當(dāng)-<x<時,f′(x)<0,函數(shù)f(x)是減函數(shù).
故當(dāng)x=-時,函數(shù)取得極大值為f(-)=
<1000,∴f(10)=1000-10a<1000,結(jié)合函數(shù)的單調(diào)性以及f(x)=x3-ax(a>0),
知方程f(x)=1000有正整數(shù)解在區(qū)間[10,+∞)上,此時令x3-ax=1000,可得 x2-a=
此時有a=x2-,由于x為大于10的整數(shù),由上知 x2-≤100,令x=11,12,13時,不等式成立,
當(dāng)x=14時,有142-=196-71>100,故可得a的值有三個,
故答案為 3.
點評:此題考查函數(shù)的零點與方程根的關(guān)系,解題的關(guān)鍵是求出f(x)在區(qū)間[-10,10]上的值域,是一道好題,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3+
1
x
,則
 
lim
△x→0
f(△x-1)+f(1)
2△x
等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3+3x-1,x∈[-1,l],則下列判斷正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3+3mx2+nx+m2為奇函數(shù),則實數(shù)m的值為
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3-3bx+b在區(qū)間(0,1)內(nèi)有極小值,則b的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3-3x+1在閉區(qū)間[-3,0]上的最大值,最小值分別為M,m,則M+m=
-14
-14

查看答案和解析>>

同步練習(xí)冊答案