9.命題“若a≥-1,則x+a≥1nx”的否定是( 。
A.若a<-1,則x+a<1nxB.若a≥-1,則x+a<1nx
C.若a<-1,則x+a≥1nxD.若a≥-1,則x+a≤1nx

分析 根據(jù)命題的否定,只否定結(jié)論,即可得到結(jié)論.

解答 解:命題“若a≥-1,則x+a≥1nx”的否定是“若a≥-1,則x+a<1nx”,
故選:B

點(diǎn)評 本題考查了命題的否定,注意和否命題的區(qū)別.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.定義在R上的偶函數(shù)f(x-2),當(dāng)x>-2時,f(x)=ex+1-2(e為自然對數(shù)的底數(shù)),若存在k∈Z,使方程f(x)=0的實數(shù)根x0∈(k-1,k),則k的取值集合是{-3,0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.$\int_0^1{({\sqrt{2x-{x^2}}-x})dx}$等于(  )
A.$\frac{π-2}{4}$B.$\frac{π-2}{2}$C.$\frac{π-1}{2}$D.$\frac{π-1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)等比數(shù)列{an}滿足a1+a3=10,a2+a4=5,則a8=$\frac{1}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.點(diǎn)P是棱長為1的正方體ABCD-A1B1C1D1的底面A1B1C1D1上一點(diǎn),則$\overrightarrow{PA}•\overrightarrow{P{C_1}}$的取值范圍是[-$\frac{1}{2}$,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.雙曲線4x2-$\frac{y^2}{9}$=1的漸近線方程是( 。
A.y=±$\frac{2}{3}$xB.y=±$\frac{1}{6}$xC.y=±$\frac{3}{2}$xD.y=±6x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)z的共軛復(fù)數(shù)是$\overline z$,若z+$\overline z=4,z•\overline z=8,則\frac{z}{\overline z}$=(  )
A.iB.-iC.±1D.±i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)函數(shù)f(2x)的定義域為(1,2),求f($\sqrt{{x}^{2}-1}$)的定義域(-$\sqrt{17}$,-$\sqrt{5}$)∪($\sqrt{5}$,$\sqrt{17}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.利用函數(shù)單調(diào)性的定義證明:證明函數(shù)f(x)=x2+3x在[-$\frac{3}{2}$,+∞)是增函數(shù).

查看答案和解析>>

同步練習(xí)冊答案