若由表格中的數(shù)據(jù)可以判定方程ex-x-2=0的一個(gè)零點(diǎn)所在的區(qū)間為(k,k+1)(k∈N),則實(shí)數(shù)k的值為
 

x-10123
ex0.3712.727.3920.09
x+212345
考點(diǎn):二分法求方程的近似解
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:令f(x)=ex-x-2在R上連續(xù),從而判斷函數(shù)的值的正負(fù)以確定函數(shù)的零點(diǎn)的位置.
解答: 解:令f(x)=ex-x-2在R上連續(xù),
f(-1)=e-1+1-2<0,
f(0)=1-0-2=-1<0,
f(1)=e-1-2≈2.72-3<0,
f(2)=e2-2-2>0;
故方程ex-x-2=0的一個(gè)根在(1,2)之間,
故k=1,
故答案為:1.
點(diǎn)評(píng):本題考查了方程的根與函數(shù)的零點(diǎn)的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明命題“若整系數(shù)一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一個(gè)是偶數(shù)”時(shí),下列假設(shè)中正確的是( 。
A、假設(shè)a,b,c不都是偶數(shù)
B、假設(shè)a,b,c都不是偶數(shù)
C、假設(shè)a,b,c至多有一個(gè)是偶數(shù)
D、假設(shè)a,b,c至多有兩個(gè)是偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ax2-lnx+b
x
,且f(1)=0,f′(1)=1.
(Ⅰ)求常數(shù)a,b的值;
(Ⅱ)若1≤λ≤2
2
,證明:函數(shù)g(x)=f(x)-λlnx(0<x≤1)的值恒非負(fù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a<0,直線l1:2x+ay=2,l2:a2x+2y=1,若l1⊥l2,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(1+
x
2
n(n∈N*)展開(kāi)式中前三項(xiàng)的系數(shù)分別為a0、a1、a2,且12a0a2=5a12
(1)求n的值;
(2)求展開(kāi)式中系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求證:(1+1×2)(1+2×3)(1+3×4)…(1+n(n+1))>e2n-3,(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某奇石廠為適應(yīng)市場(chǎng)需求,投入98萬(wàn)元引進(jìn)我國(guó)先進(jìn)設(shè)備,并馬上投入生產(chǎn).第一年需各種費(fèi)用12萬(wàn)元,從第二年開(kāi)始,每年所需費(fèi)用會(huì)比上一年增加4萬(wàn)元.而每年因引入該設(shè)備可獲得年利潤(rùn)為50萬(wàn)元.請(qǐng)你根據(jù)以上數(shù)據(jù),解決以下問(wèn)題:
(1)引進(jìn)該設(shè)備多少年后,該廠開(kāi)始盈利?
(2)引進(jìn)該設(shè)備若干年后,該廠提出兩種處理方案:
第一種:年平均利潤(rùn)達(dá)到最大值時(shí),以26萬(wàn)元的價(jià)格賣(mài)出.
第二種:盈利總額達(dá)到最大值時(shí),以8萬(wàn)元的價(jià)格賣(mài)出.問(wèn)哪種方案較為合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某桶裝水經(jīng)營(yíng)部每天的房租、人員工資等固定成本為200元,每桶水的進(jìn)價(jià)是6元,銷售單價(jià)與日均銷售量的關(guān)系如下表:
銷售單價(jià)/元678910111213
日均銷售量/桶480440400360320280240200
請(qǐng)根據(jù)以上數(shù)據(jù)作出分析,這個(gè)經(jīng)營(yíng)部為獲得最大利潤(rùn)應(yīng)定價(jià)為( 。
A、11元B、11.5元
C、12元D、12.5元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
(
1
3
)x(x≤0)
log3x(x>0)
,則f[-f(9)]=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案