19.甲、乙、丙三人站成一排站法的種數(shù)共有( 。
A.6B.3C.9D.12

分析 把3人全排即可得到答案.

解答 解:甲、乙、丙三人站成一排站法的種數(shù)共有A33=6,
故選:A.

點評 本題考查了簡單的排列問題,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

9.實數(shù)x、y滿足約束條件$\left\{\begin{array}{l}x+y≤4\\ x+2y≤6\\ x≥0\\ y≥0\end{array}\right.$,則目標函數(shù)k=2x+3y的最大值為10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知向量$\overrightarrow{AC}$⊥$\overrightarrow{AB}$,|$\overrightarrow{AC}$|=2,則$\overrightarrow{CA}$•$\overrightarrow{BC}$的值是( 。
A.4B.-4C.2D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.完成某項工作需4個步驟,每一步方法數(shù)相等,完成這項工作共有81種方法,改革后完成這項工作減少了一個步驟,改革后完成這項工作有27種方法.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.如圖程序框圖的算法思路來源于我國古代數(shù)學名著《九章算術》中的“更相減損術”.執(zhí)行該程序框圖,若輸入a,b,i的值分別為12,16,0,則輸出a和i的值分別為( 。
A.4,3B.4,4C.4,5D.3,4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.從8名同學中選4人參加4×100米接力賽,有多少種不同的參賽方案?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.某市教育主管部門為調查該市高三學生的視力情況,從全市隨機抽取了100名學生迸行檢測,并將視力以[3.3,3.7),[3.7,4.1),[4.1,4.5),[4.5,4.9),[4.9,5.3]分段進行統(tǒng)計,得到如圖所示的頻率分布直方圖.
(I)根據(jù)頻率分布直方圖求圖中a的值,并求抽取的100名學生中,視力不小于4.5的學生人數(shù),若從抽取的這100名學生中視力不小于4.5的學生中任選兩人,求至少有一人視力不小于4.9的概率;
(Ⅱ)從全市高中學生(人數(shù)很多)中任意選取3名學生,記ξ為3名學生中視力不小于4.5的人數(shù),試求隨機變量ξ的分布列和數(shù)學期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=mx+3,g(x)=x2+2x+m.
(I)解不等式f(x)≥g(x);
(Ⅱ)若不等式f(x)+g(x)≥0對任意的x∈(-1,+∞)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.過橢圓$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1的上頂點A作斜率分別為k1,k2(k1,k2>0,k1≠k2)的兩條直線l1,l2,它們分別與橢圓交于另一點M,N.
(1)當k1,k2滿足什么條件時,直線MN垂直于x軸;
(2)當k1k2=1時,求直線MN的斜率k的取值范圍.

查看答案和解析>>

同步練習冊答案