1.如圖程序運(yùn)行的結(jié)果是( 。
A.1B.2C.3D.4

分析 模擬執(zhí)行程序,根據(jù)賦值語句的功能,順序賦值即可得解.

解答 解:由順序結(jié)構(gòu)的程序框圖及賦值語句的功能知:
M=1
M=1+1=2
M=2+2=4
輸出M的值為4.
故選:D.

點(diǎn)評 本題考查了順序結(jié)構(gòu)的程序框圖及賦值語句的功能,讀懂語句的含義是解答此類問題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.若正項(xiàng)數(shù)列{an}滿足:$\frac{{a}_{n+1}}{{a}_{n}}$=an+1-an(a∈N*),則稱此數(shù)列為“比差等數(shù)列”.
(1)請寫出一個“比差等數(shù)列”的前3項(xiàng)的值;
(2)設(shè)數(shù)列{an}是一個“比差等數(shù)列”
(i)求證:a2≥4;
(ii)記數(shù)列{an}的前n項(xiàng)和為Sn,求證:對于任意n∈N*,都有Sn>$\frac{{n}^{2}+5n-4}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,四邊形ABCD中,∠ABC=∠C=120°,AB=4,BC=CD=2,則該四邊形的面積是$5\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.為了迎接珠海作為全國文明城市的復(fù)查,愛衛(wèi)會隨機(jī)抽取了60位路人進(jìn)行問卷調(diào)查,調(diào)查項(xiàng)目是自己對珠海各方面衛(wèi)生情況的滿意度(假設(shè)被問卷的路人回答是客觀的),以分?jǐn)?shù)表示問卷結(jié)果,并統(tǒng)計他們的問卷分?jǐn)?shù),把其中不低于50分的分成五段[50,60),[60,70),…[90,100]后畫出如圖部分頻率分布直方圖,觀察圖形信息,回答下列問題:
(1)求出問卷調(diào)查分?jǐn)?shù)低于50分的被問卷人數(shù);
(2)估計全市市民滿意度在60分及以上的百分比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.五一節(jié)期間,某商場為吸引顧客消費(fèi)推出一項(xiàng)優(yōu)惠活動,活動規(guī)則如下:消費(fèi)額每滿100元可轉(zhuǎn)動如圖所示的轉(zhuǎn)盤一次,并獲得相應(yīng)金額的返券.(假定指針等可能地停在任一位置,指針落在區(qū)域的邊界時,重新轉(zhuǎn)一次)指針?biāo)诘膮^(qū)域及對應(yīng)的返劵金額見表.
例如:消費(fèi)218元,可轉(zhuǎn)動轉(zhuǎn)盤2次,所獲得的返券金額是兩次金額之和.
(1)已知顧客甲消費(fèi)后獲得n次轉(zhuǎn)動轉(zhuǎn)盤的機(jī)會,已知他每轉(zhuǎn)一次轉(zhuǎn)盤指針落在區(qū)域邊界的概率為p,每次轉(zhuǎn)動轉(zhuǎn)盤的結(jié)果相互獨(dú)立,設(shè)ξ為顧客甲轉(zhuǎn)動轉(zhuǎn)盤指針落在區(qū)域邊界的次數(shù),ξ的數(shù)學(xué)期望Eξ=$\frac{1}{25}$,方差Dξ=$\frac{99}{2500}$,求n、p的值;
(2)顧客乙消費(fèi)280元,并按規(guī)則參與了活動,他獲得返券的金額記為η(元).求隨機(jī)變量η的分布列和數(shù)學(xué)期望.
指針位置A區(qū)域B區(qū)域C區(qū)域
返券金額(單位:元)60300

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=Asin(ωx+φ)滿足:f($\frac{π}{3}$+x)=-f($\frac{π}{3}$-x),且f($\frac{π}{6}$+x)=f($\frac{π}{6}$-x),則ω的一個可能取值是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.先后擲骰子兩次,都落在水平桌面上,記正面朝上的點(diǎn)數(shù)分別為x,y.設(shè)事件A:x+y為偶數(shù); 事件B:x,y至少有一個為偶數(shù)且x≠y.則P(B|A)=( 。
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機(jī)訪問部分職工,根據(jù)被訪問職工對該部門的評分,繪制頻率分布直方圖(如圖所示).
(Ⅰ)求頻率分布表中①、②、③位置相應(yīng)數(shù)據(jù),并在答題紙上完成頻率分布直方圖;
組號分組頻數(shù)頻率
第1組[50,60)50.050
第2組[60,70)0.350
第3組[70,80)30
第4組[80,90)200.200
第5組[90,100]100.100
合計1.00
(Ⅱ)為進(jìn)一步了解情況,該企業(yè)決定在第3,4,5組中用分層抽樣抽取5名職工進(jìn)行座談,求第3,4,5組中各自抽取的人數(shù);
(Ⅲ)求該樣本平均數(shù)$\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)a∈R,函數(shù)f(x)=lnx-ax.
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)F(x)=f(x)+ax2+ax,問F(x)是否存在極值,若存在,請求出極值;若不存在,請說明理由;
(Ⅲ)設(shè)A(x1,y1),B(x2,y2)是函數(shù)g(x)=f(x)+ax圖象上任意不同的兩點(diǎn),線段AB的中點(diǎn)為C(x0,y0),直線AB的斜率為為k.證明:k>g′(x0).

查看答案和解析>>

同步練習(xí)冊答案