13.先后擲骰子兩次,都落在水平桌面上,記正面朝上的點(diǎn)數(shù)分別為x,y.設(shè)事件A:x+y為偶數(shù); 事件B:x,y至少有一個(gè)為偶數(shù)且x≠y.則P(B|A)=(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{2}{5}$

分析 根據(jù)題意,利用隨機(jī)事件的概率公式,分別求出事件A的概率與事件A、B同時(shí)發(fā)生的概率,再用條件概率公式加以計(jì)算,可得P(B|A)的值.

解答 解:根據(jù)題意,若事件A為“x+y為偶數(shù)”發(fā)生,則x、y兩個(gè)數(shù)均為奇數(shù)或均為偶數(shù).
共有2×3×3=18個(gè)基本事件,
∴事件A的概率為P1=$\frac{2×3×3}{6×6}$=$\frac{1}{2}$.
而A、B同時(shí)發(fā)生,基本事件有“2+4”、“2+6”、“4+2”、“4+6”、“6+2”、“6+4”,
一共有6個(gè)基本事件,
因此事件A、B同時(shí)發(fā)生的概率為P2=$\frac{6}{6×6}$=$\frac{1}{6}$
因此,在事件A發(fā)生的情況下,B發(fā)生的概率為P(B|A)=$\frac{{P}_{2}}{{P}_{1}}$=$\frac{1}{3}$
故選:A.

點(diǎn)評(píng) 本題給出擲骰子的事件,求條件概率.著重考查了隨機(jī)事件的概率公式、條件概率的計(jì)算等知識(shí),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知復(fù)數(shù)z=1+i(i為虛數(shù)單位).
(1)設(shè)ω=z2+3$\overline{z}$-4,求|ω|;
(2)若$\frac{a-{i}^{3}}{z}$=2-i,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知扇形的弧長(zhǎng)是6cm,面積是18cm2,則扇形的中心角的弧度數(shù)是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖程序運(yùn)行的結(jié)果是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.某中學(xué)團(tuán)委組織了“弘揚(yáng)奧運(yùn)精神,愛(ài)我中華”的知識(shí)競(jìng)賽,從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(jī)(均為整數(shù))分成六段[40,50),[50,60),…,[90,100〕后畫(huà)出如圖所示的頻率分布直方圖.觀察圖形給出的信息,回答下列問(wèn)題:
(Ⅰ)求第四小組的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(Ⅱ)估計(jì)這次考試的及格率(60分及以上為及格)和平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知半徑為1的圓O1是半徑為R的球O的一個(gè)截面,若球面上任一點(diǎn)到圓面O1的距離的最大值為$\frac{3R}{2}$,則球O的表面積為$\frac{16π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則φ的值為(  )
A.$\frac{π}{6}$B.$-\frac{π}{6}$C.$\frac{π}{3}$D.$-\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.把一枚骰子連續(xù)擲兩次,已知在第一次拋出的是奇數(shù)點(diǎn)的情況下,第二次拋出的也是奇數(shù)點(diǎn)的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=mex-lnx-1.
(Ⅰ)當(dāng)m=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)當(dāng)m≥1時(shí),證明:f(x)>1.

查看答案和解析>>

同步練習(xí)冊(cè)答案