已知集合A={a1,a2,a3,…an},記和ai+aj(1≤i<j≤n)中所有不同值的個(gè)數(shù)為M(A).如當(dāng)A={1,2,3,4}時(shí),由1+2=3,1+3=4,1+4=2+3=5,2+4=6,3+4=7,得M(A)=5.對(duì)于集合B={b1,b2,b3,…,bn},若實(shí)數(shù)b1,b2,b3,…,bn成等差數(shù)列,則M(B)=________.
2n-3
分析:把 bi+bj (1≤i<j≤m,i,j∈N)的值列成圖表,嚴(yán)格利用題目給出的新定義,采用列舉法來(lái)進(jìn)行求解即可.
解答:對(duì)于集合B={b1,b2,b3,…,bn},若實(shí)數(shù)b1,b2,b3,…,bn成等差數(shù)列,
則 bi+bj (1≤i<j≤m,i,j∈N)的值列成如下各列所示圖表:
b1+b2,b2+b3,b3+b4,…,bn-1+bn,
b1+b2,b2+b4,b3+b5,…,bn-2+bn,
…,…,…,
b1+bn-2,b2+bn-1,b3+bn,
b1+bn-1,b2+bn,
b1+bn,
∵數(shù)列{bn}是等差數(shù)列,
∴b1+b4=b2+b3,b1+b5=b2+b4,…,b1+bn=b2+bn-1.
∴第二列中只有 b2+bn 的值和第一列不重復(fù),即第二列剩余一個(gè)不重復(fù)的值,
同理,以后每列剩余一個(gè)與前面不重復(fù)的值,
∵第一列共有n-1個(gè)不同的值,后面共有n-1列,
∴所有不同的值有:n-1+n-2=2n-3,故M(B)=2n-3,
故答案為 2n-3.
點(diǎn)評(píng):本題的屬于新定義的創(chuàng)新題,主要考查等差數(shù)列的定義和性質(zhì),題目篇幅長(zhǎng),難于理解是解決這一問(wèn)題的障礙,屬于中檔題.