10.若函數(shù)f(x)是偶函數(shù),其定義域?yàn)椋?∞,+∞),且在[0,+∞)上是減函數(shù),則不等式f(lgx)>f(-1)成立的 x的取值范圍為(  )
A.$(\frac{1}{10},10)$B.$(0,\frac{1}{10})$C.(0,10)D.(10,+∞)

分析 由偶函數(shù)性質(zhì)可化f(lgx)>f(1)為f(|lgx|)>f(1),利用函數(shù)單調(diào)性可去掉“f”.

解答 解:∵f(x)為偶函數(shù),∴f(lgx)=f(|lgx|),
則f(lgx)>f(-1)即為f(|lgx|)>f(1),
又f(x)在[0,+∞)上是減函數(shù),
∴|lgx|<1,即-1<lgx<1,解得$\frac{1}{10}$<x<10,
故選A.

點(diǎn)評 本題考查函數(shù)的奇偶性、單調(diào)性的綜合運(yùn)用,屬基礎(chǔ)題,解決該題的關(guān)鍵利用函數(shù)的性質(zhì)化抽象不等式為具體不等式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在鈍角△ABC中角A,B,C的對邊分別是a,b,c,若a=2,b=3,則最大邊c的取值范圍是($\sqrt{13}$,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知定義在[-2,2]上的函數(shù)f(x),當(dāng)x∈[-2,2]都滿足f(-x)=f(x),且對于任意的a,b∈[0,2],都有$\frac{f(a)-f(b)}{a-b}$<0(a≠b),若f(1-m)<f(m),則實(shí)數(shù)m的取值范圍為-1≤m<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.解關(guān)于x的不等式:
(1)$\frac{3x-2}{x-1}$>1;
(2)x2-ax-2a2<0 (a為常數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=alnx+x在區(qū)間[2,3]上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是( 。
A.[-2,+∞)B.[-3,+∞)C.[0,+∞)D.(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=-x2+bln(x+1)在[0,+∞)上單調(diào)遞減,則b的取值范圍( 。
A.[0,+∞)B.[-$\frac{1}{2}$,+∞)C.(-∞,0]D.(-∞,-$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.動圓C經(jīng)過定點(diǎn)F(0,2)且與直線y+2=0相切,則動圓的圓心C的軌跡方程是x2=8y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)全集U=R,A={x|x(x-2)<0},B={x|y=ln(1-x)<0},則A∩(∁UB)=( 。
A.{x|0<x≤1}B.{x|1≤x<2}C.{x|x≥1}D.{x|x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列說法中正確的是(  )
A.已知f(x)是可導(dǎo)函數(shù),則“f'(x0)=0”是“x0是f(x)的極值點(diǎn)”的充分不必要條件
B.“若α=$\frac{π}{6}$,則sinα=$\frac{1}{2}$”的否命題是“若α≠$\frac{π}{6}$,則sinα≠$\frac{1}{2}$”
C.若p:?x0∈R,x02-x0-1>0,則?p:?x∈R,x2-x-1<0
D.若p∧q為假命題,則p,q均為假命題

查看答案和解析>>

同步練習(xí)冊答案