6.設(shè)集合M={x|x2-2x>0},集合N={0,1,2,3,4},則M∩N等于(  )
A.{4}B.{3,4}C.{0,1,2}D.{0,1,2,3,4}

分析 解不等式得集合M,根據(jù)交集的定義寫出M∩N.

解答 解:集合M={x|x2-2x>0}={x|x<0或x>2},
集合N={0,1,2,3,4},
則M∩N={3,4}.
故選:B.

點評 本題考查了解不等式與集合的運算問題,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

16.已知i為虛數(shù)單位,復數(shù)z滿足z(1+i)=1,則z的共軛復數(shù)$\overline{z}$=( 。
A.$\frac{1}{2}+\frac{1}{2}i$B.$\frac{1}{2}-\frac{1}{2}i$C.$-\frac{1}{2}+\frac{1}{2}i$D.$-\frac{1}{2}-\frac{1}{2}i$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=(x+a)lnx在x=1處的切線方程為y=x-1.
(Ⅰ)求a的值及f(x)的單調(diào)區(qū)間;
(Ⅱ)記函數(shù)y=F(x)的圖象為曲線C,設(shè)點A(x1,y1),B(x2,y2)是曲線C上不同的兩點,如果在曲線C上存在點M(x0,y0),使得①x0=$\frac{{x}_{1}+{x}_{2}}{2}$;②曲線C在點M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.試證明:函數(shù)f(x)不存在“中值相依切線”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知數(shù)列{an}中,a1=1,且${a_n}=\frac{n}{n-1}{a_{n-1}}+2n•{3^{n-2}}({n≥2,n∈{N^*}})$.
(1)求a2,a3的值及數(shù)列{an}的通項公式;
(2)令${b_n}=\frac{{{3^{n-1}}}}{a_n}({n∈{N^*}})$,設(shè)數(shù)列{bn}的前n項和為Sn,求Sn并比較${S_{2^n}}$與n的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設(shè)不等式組$\left\{\begin{array}{l}{x+y-3<0}\\{x-2y-3≤0}\\{x≥1}\end{array}\right.$表示的平面區(qū)域為Ω1,平面區(qū)域Ω2與Ω1關(guān)于直線2x+y=0對稱,對于任意的C∈Ω1,D∈Ω2,則|CD|的最小值為$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知(x+$\frac{a}{x}$)n(n∈N,n>5)展開式的第5項是70,則展開式各項系數(shù)和是( 。
A.1B.-1C.28或0D.29或0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知$\overrightarrow{a}$=(sinα,cosα),$\overrightarrow$=($\sqrt{3}$,1),且$\overrightarrow{a}⊥\overrightarrow$,那么sin(α+$\frac{π}{3}$)=( 。
A.-$\frac{1}{2}$或$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,四棱錐中P-ABCD,PA⊥平面ABCD,∠PDA=30°,O,E,F(xiàn)分別是AC,AB,PC的中點.
(1)證明;平面EFO∥平面PAD;
(2)證明:FO⊥平面ABCD;
(3)求EF與平面ABCD所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設(shè)數(shù)列{an}的前n項和為Sn.已知a1=1,2Sn=nan+1-$\frac{n(n+1)(n+2)}{3}$,n∈N*
(Ⅰ) 求數(shù)列{an}的通項公式;
(Ⅱ)  證明:對一切正整數(shù)n,有$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}<\frac{7}{4}$.

查看答案和解析>>

同步練習冊答案