5.函數(shù)$f(x)={log_3}(\frac{1+x}{1-x})$,則$f(\frac{1}{2})$=1,y=f(x)的圖象關(guān)于原點對稱.

分析 根據(jù)條件判斷函數(shù)的奇偶性即可.

解答 解:函數(shù)$f(x)={log_3}(\frac{1+x}{1-x})$,
則$f(\frac{1}{2})$=${log}_{3}^{(\frac{1+\frac{1}{2}}{1-\frac{1}{2}})}$=1,
由$\frac{1+x}{1-x}$>0得-1<x<1,
則f(-x)+f(x)=log3 $\frac{1+x}{1-x}$+log3 $\frac{1-x}{1+x}$=log3($\frac{1+x}{1-x}$•$\frac{1-x}{1+x}$)=log31=0,
即f(-x)=-f(x),
則函數(shù)f(x)是奇函數(shù),
故圖象關(guān)于原點對稱,
故答案為:1,原點.

點評 本題主要考查函數(shù)圖象的對稱性,利用函數(shù)奇偶性的性質(zhì)是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

15.已知函數(shù)f(x)=xex,現(xiàn)有下列五種說法:
①函數(shù)f(x)為奇函數(shù);
②函數(shù)f(x)的減區(qū)間為(-∞,1),增區(qū)間為(1,+∞);
③函數(shù)f(x)的圖象在x=0處的切線的斜率為1;
④函數(shù)f(x)的最小值為$-\frac{1}{e}$.
其中說法正確的序號是③④(請寫出所有正確說法的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)f(x)的導函數(shù)圖象如圖所示,若△ABC為鈍角三角形,且∠C為鈍角,則一定成立的是(  )
A.f(cosA)<f(cosB)B.f(sinA)<f(cosB)C.f(sinA)>f(cosB)D.f(sinA)>f(sinB)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.寫出命題“如果x=3或x=7,則(x-3)(x-7)=0”的逆命題、否命題和逆否命題,并判斷真假.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=eax(其中e=2.71828…),$g(x)=\frac{f(x)}{x}$.
(1)若g(x)在[1,+∞)上是增函數(shù),求實數(shù)a的取值范圍;
(2)當$a=\frac{1}{2}$時,求函數(shù)g(x)在[m,m+1](m>0)上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.定義運算$|\begin{array}{l}{a}&\\{c}&tdjrnpb\end{array}|$=ad-bc,則符合條件$|\begin{array}{l}{z}&{1+2i}\\{1-i}&{1+i}\end{array}|$=0的復數(shù)z為2-i.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一條對稱軸是直線$x=\frac{π}{8}$,則φ=-$\frac{3π}{4}$,y=f(x)的單調(diào)增區(qū)間是-$\frac{3π}{4}$,[$\frac{π}{8}$+kπ,$\frac{5π}{8}$+kπ],k∈Z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某校開設了“數(shù)學”、“剪紙”、“美術(shù)”三個社團,三個社團參加的人數(shù)如表所示,為了解學生對社團的意見,學校采用分層抽樣的方法從三個社團中抽取一個容量為n的樣本,已知從“剪紙”社團抽取的同學比從“數(shù)學”社團抽取的同學少2人.
社團數(shù)學剪紙美術(shù)
人數(shù)320240200
(1)求“剪紙”社團抽取了多少人;
(2)設從“剪紙”社團抽取的同學中有2名女生,現(xiàn)要從“剪紙”社團中隨機選出2人擔任社團活動監(jiān)督的職務,求至少有1名女生被選中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知集合A={x||x-1|≤1,x∈R},B={x|$\sqrt{x}$≤4,x∈Z},則A∩B=( 。
A.[0,2]B.(0,2)C.{0,2}D.{0,1,2}

查看答案和解析>>

同步練習冊答案