16.△ABC是底邊邊長(zhǎng)為2$\sqrt{2}$的等腰直角三角形,P是以直角頂點(diǎn)C為圓心,半徑為1的圓上任意一點(diǎn),若m≤$\overrightarrow{AP}$•$\overrightarrow{PB}$≤n,則n-m的最小值為( 。
A.4$\sqrt{2}$B.2$\sqrt{2}$C.2D.4

分析 以CA為x軸,CB為y軸建立直角坐標(biāo)系,設(shè)P(cosθ,sinθ),再代入計(jì)算即可.

解答 解:以CA為x軸,CB為y軸建立直角坐標(biāo)系,設(shè)P(cosθ,sinθ),
∵△ABC是底邊邊長(zhǎng)為2$\sqrt{2}$的等腰直角三角形,
∴A(2,0),B(0,2),
∴$\overrightarrow{AP}$=(cosθ-2,sinθ),$\overrightarrow{PB}$=(-cosθ,2-sinθ),
∴$\overrightarrow{AP}$•$\overrightarrow{PB}$=cos2θ-2cosθ+2sinθ-sin2θ=2$\sqrt{2}$sin(θ-$\frac{π}{4}$)-1,
∵-1≤sin(θ-$\frac{π}{4}$)≤1,
∴-2$\sqrt{2}$+1≤2$\sqrt{2}$sin(θ-$\frac{π}{4}$)-1≤2$\sqrt{2}$+1,
∵m≤$\overrightarrow{AP}$•$\overrightarrow{PB}$≤n,
∴m=1-2$\sqrt{2}$,n=1+2$\sqrt{2}$,
∴n-m=4$\sqrt{2}$,
故選:A

點(diǎn)評(píng) 本題的關(guān)鍵在建立坐標(biāo)系,然后用三角代換表示各點(diǎn)的坐標(biāo),這樣使得問題容易表達(dá)并易于求解,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.根據(jù)下列條件解三角形:
(1)A=30°,B=105°,c=$\sqrt{2}$;
(2)a=14,b=7$\sqrt{6}$,B=60°;
(3)b=47,c=38,C=110°;
(4)b=25,c=12,C=23°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖是某幾何體的三視圖,則該幾何體的表面積為(  )
A.$\frac{9}{2}$π+24B.$\frac{9}{2}$π+30C.9π+54D.36π+30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知平面向量$\overrightarrow a=({{x_1},{y_1}}),\overrightarrow b=({{x_2},{y_2}})$,若$|{\overrightarrow a}|=3,|{\overrightarrow b}|=4,\overrightarrow a•\overrightarrow b=-12$,則$\frac{{{x_1}+{y_1}}}{{{x_2}+{y_2}}}$=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,長(zhǎng)方形OABC中,O為坐標(biāo)原點(diǎn),點(diǎn)C在y軸上,A(4,0),曲線y2=ax(a>0)經(jīng)過點(diǎn)B,現(xiàn)將一質(zhì)點(diǎn)隨機(jī)投入長(zhǎng)方形OABC中,若質(zhì)點(diǎn)落在圖中陰影區(qū)域的概率是(  )
A.2B.1C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知O為直角坐標(biāo)系原點(diǎn),P,Q的坐標(biāo)滿足不等式組$\left\{\begin{array}{l}4x+3y-25≤0\\ x-2y+2≤0\\ x-1≥0\end{array}\right.$,則cos∠POQ的最小值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知A(-1,0),B(3,2),C(0,-2),則過這三點(diǎn)的圓方程為(  )
A.(x-$\frac{3}{2}$)2+y2=25B.(x+$\frac{3}{2}$)2+y2=$\frac{1}{4}$C.(x-$\frac{3}{2}$)2+y2=$\frac{25}{4}$D.x2+(y-$\frac{3}{2}$)2=$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面A1B1C1,AA1=AC=BC=1,∠ACB=90°,D是A1B1的中點(diǎn),F(xiàn)是BB1上的點(diǎn),AB1,DF交于點(diǎn)E,且AB1⊥DF,則下列結(jié)論中不正確的是( 。
A.CE與BC1異面且垂直B.AB1⊥C1F
C.△C1DF是直角三角形D.DF的長(zhǎng)為$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知拋物線E:y2=4x的準(zhǔn)線為l,焦點(diǎn)為F,O為坐標(biāo)原點(diǎn).
(1)求過點(diǎn)O,F(xiàn),且與l相切的圓的方程;
(2)過F的直線交拋物線E于A,B兩點(diǎn),A關(guān)于x軸的對(duì)稱點(diǎn)為A′,求證:直線A′B過定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案