?x∈R,不等式4mx2-2mx-1<0恒成立, m的取值范圍是
 
考點(diǎn):函數(shù)恒成立問題
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:依題意,對(duì)m分m=0與m≠0討論,利用二次函數(shù)的性質(zhì)即可求得m的取值范圍.
解答: 解:①當(dāng)m=0時(shí),有-1<0恒成立,故m=0滿足題意;
②當(dāng)m≠0時(shí),依題意得
m<0
△<0
,即
m<0
4m2-4×4m×(-1)<0
,
解得:-4<m<0;
綜合①②知,mm的取值范圍是-4<m≤0,即m∈(-4,0],
故答案為:(-4,0].
點(diǎn)評(píng):本題考查函數(shù)恒成立問題,考查分類討論思想與運(yùn)算求解能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線方程為2x2-y2=2,其弦PQ的長(zhǎng)是實(shí)軸長(zhǎng)的2倍,若弦PQ所在的直線l過點(diǎn)A(
3
,0),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為定義在[-1,1]上的奇函數(shù),且當(dāng)x∈(0,1]時(shí),f(x)=
2x
4x+1

(1)試用函數(shù)單調(diào)性定義證明:f(x)在(0,1]上是減函數(shù);
(2)求函數(shù)f(x)在[-1,1]上的解析式;
(3)要使方程f(x)=x+b在區(qū)間[-1,1]上恒有實(shí)數(shù)解,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

試比較2n+2與n2的大。╪∈Z+),并用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(3-2x)n=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n(n∈N+),a2=60.
(1)求n的值;
(2)求-
a1
2
+
a2
22
-
a3
23
+…+(-1)n
an
2n
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2,g(x)=2x-m,若對(duì)?x1∈[-1,3],?x2∈[0,2],使f(x1)≥g(x2),則m的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若0≤2x≤2π,則使
1-sin22x
=cos2x成立的x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=k(x+2)與拋物線C:y2=8x相交于A、B兩點(diǎn),F(xiàn)為拋物線C的焦點(diǎn).若|
FA
|=2|
FB
|
,則實(shí)數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
3
sinxcosx+cos2x-
1
2
的最小正周期是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案