【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C:的離心率為,右準(zhǔn)線(xiàn)方程為.
求橢圓C的標(biāo)準(zhǔn)方程;
已知斜率存在且不為0的直線(xiàn)l與橢圓C交于A,B兩點(diǎn),且點(diǎn)A在第三象限內(nèi)為橢圓C的上頂點(diǎn),記直線(xiàn)MA,MB的斜率分別為,.
若直線(xiàn)l經(jīng)過(guò)原點(diǎn),且,求點(diǎn)A的坐標(biāo);
若直線(xiàn)l過(guò)點(diǎn),試探究是否為定值?若是,請(qǐng)求出定值;若不是,請(qǐng)說(shuō)明理由.
【答案】(1);(2)①;②為定值1.
【解析】
(1)由已知列關(guān)于a,c的方程組,求解可得a,c的值,再由隱含條件求得b,則橢圓C的標(biāo)準(zhǔn)方程可求;
(2)①設(shè)A(x1,y1),M(0,1),由橢圓對(duì)稱(chēng)性可知B(﹣x1,﹣y1),由點(diǎn)A(x1,y1)在橢圓上,得到,求出k1k2,結(jié)合k1﹣k2,可得k1=1,則直線(xiàn)MA的方程可求,再與橢圓方程聯(lián)立即可求得A的坐標(biāo);
②直線(xiàn)l過(guò)點(diǎn)(﹣2,﹣1),設(shè)其方程為y+1=k(x+2),與橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系即可得到k1+k2是定值.
(1)因?yàn)闄E圓的離心率為,右準(zhǔn)線(xiàn)方程為,
所以,
解得.
又因?yàn)?/span>.
所以橢圓的標(biāo)準(zhǔn)方程為.
(2)設(shè),,為橢圓的上頂點(diǎn),則.
①因?yàn)橹本(xiàn)經(jīng)過(guò)原點(diǎn),由橢圓對(duì)稱(chēng)性可知.
因?yàn)辄c(diǎn)在橢圓上,所以,即.
因?yàn)?/span>,.
所以.
所以,解得或.
因?yàn)辄c(diǎn)在第三象限內(nèi),所以,所以,則直線(xiàn)的方程為.
聯(lián)結(jié)方程組,解得或,所以.
(解出,,也可根據(jù),,求出點(diǎn)的坐標(biāo))
②直線(xiàn)過(guò)點(diǎn),設(shè)其方程為.
聯(lián)列方程組,消去可得(4k2+1)x2+8k(2k﹣1)x+16k(k﹣1)=0.
當(dāng)時(shí),由韋達(dá)定理可知,.
又因?yàn)?/span>
.
所以為定值1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的定義域;
(2)若函數(shù)有且僅有一個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍;
(3)任取,若不等式對(duì)任意恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中心在原點(diǎn)的橢圓C的一個(gè)頂點(diǎn)為,焦點(diǎn)在x軸上,右焦點(diǎn)到直線(xiàn)的距離為.
求橢圓的標(biāo)準(zhǔn)方程;
若直線(xiàn)l:交橢圓C于M,N兩點(diǎn),設(shè)點(diǎn)N關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為點(diǎn)與點(diǎn)M不重合,且直線(xiàn)與x軸的交于點(diǎn)P,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
()當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程.
()求的單調(diào)區(qū)間.
()求證:當(dāng)時(shí),函數(shù)存在最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓C:.
若圓C的切線(xiàn)l在x軸和y軸上的截距相等,且截距不為零,求切線(xiàn)l的方程;
已知點(diǎn)為直線(xiàn)上一點(diǎn),由點(diǎn)P向圓C引一條切線(xiàn),切點(diǎn)為M,若,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=x2-a|x-1|-1,a∈R.
(1)判斷并證明函數(shù)f(x)的奇偶性;
(2)若f(x)≥0對(duì)x∈[1,+∞)恒成立,求a的取值范圍;
(3)寫(xiě)出f(x)在[-2,2]上的最大值g(a).(不需要解答過(guò)程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù),滿(mǎn)足,.
(1)求函數(shù)的解析式;
(2)若關(guān)于的不等式在上有解,求實(shí)數(shù)的取值范圍;
(3)若函數(shù)的兩個(gè)零點(diǎn)分別在區(qū)間和內(nèi),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校早上8:00開(kāi)始上課,假設(shè)該校學(xué)生小張與小王都在早上7:30--7:50之間到校,且每人在該時(shí)間段的任何時(shí)刻到校是等可能的,求小張比小王至少早5分鐘到校的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)拋物線(xiàn)的焦點(diǎn)做直線(xiàn)交拋物線(xiàn)于兩點(diǎn),分別過(guò)作拋物線(xiàn)的切線(xiàn),則的交點(diǎn)的軌跡方程是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com