【題目】在邊長為2的菱形中,,將菱形沿對角線對折,使二面角的余弦值為,則所得三棱錐的內(nèi)切球的表面積為( )

A. B. C. D.

【答案】C

【解析】

作出圖形,利用菱形對角線相互垂直的性質(zhì)得出DNAC,BNAC,可得出二面角BACD的平面角為∠BND,再利用余弦定理求出BD,可知三棱錐BACD為正四面體,可得出內(nèi)切球的半徑R,再利用球體的表面積公式可得出答案.

如下圖所示,

易知△ABC和△ACD都是等邊三角形,取AC的中點N,則DNAC,BNAC

所以,∠BND是二面角BACD的平面角,過點BBODNDN于點O,可得BO⊥平面ACD

因為在△BDN中,,所以,BD2BN2+DN2﹣2BNDNcos∠BND,

BD=2.

故三棱錐ABCD為正四面體,則其內(nèi)切球半徑為正四面體高的,又正四面體的高為棱長的,故

因此,三棱錐ABCD的內(nèi)切球的表面積為

故選:C

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】6名運動員中選4人參加4×100米接力賽,在下列條件下,各有多少種不同的排法?

1)甲、乙兩人必須入選且跑中間兩棒;

2)甲不跑第一棒且乙不跑第四棒.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)設(shè)的極值點,求的值;

(Ⅱ)在(Ⅰ)的條件下,在定義域內(nèi)恒成立,求的取值范圍;

(Ⅲ)時,證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】大型綜藝節(jié)目《最強大腦》中,有一個游戲叫做盲擰魔方,就是玩家先觀察魔方狀態(tài)并進行記憶,記住后蒙住眼睛快速還原魔方,盲擰在外人看來很神奇,其實原理是十分簡單的,要學會盲擰也是很容易的.根據(jù)調(diào)查顯示,是否喜歡盲擰魔方與性別有關(guān).為了驗證這個結(jié)論,某興趣小組隨機抽取了50名魔方愛好者進行調(diào)查,得到的情況如下表所示:

喜歡盲擰

不喜歡盲擰

總計

22

30

12

總計

50

1

并邀請這30名男生參加盲擰三階魔方比賽,其完成情況如下表所示:

成功完成時間(分鐘)

人數(shù)

10

10

5

5

2

1)將表1補充完整,并判斷能否在犯錯誤的概率不超過0.025的前提下認為是否喜歡盲擰與性別有關(guān)?

2)根據(jù)表2中的數(shù)據(jù),求這30名男生成功完成盲擰的平均時間(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代替);附參考公式及數(shù)據(jù):,其中.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),若以直角坐標系中的原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為為實數(shù).

1)求曲線的普通方程和曲線的直角坐標方程;

2)若曲線與曲線有公共點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓:過點和點.

Ⅰ)求橢圓的方程;

Ⅱ)設(shè)直線與橢圓相交于不同的兩點, ,是否存在實數(shù),使得?若存在,求出實數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某醫(yī)療器械公司在全國共有個銷售點,總公司每年會根據(jù)每個銷售點的年銷量進行評價分析.規(guī)定每個銷售點的年銷售任務(wù)為一萬四千臺器械.根據(jù)這個銷售點的年銷量繪制出如下的頻率分布直方圖.

(1)完成年銷售任務(wù)的銷售點有多少個?

(2)若用分層抽樣的方法從這個銷售點中抽取容量為的樣本,求該五組,,,(單位:千臺)中每組分別應(yīng)抽取的銷售點數(shù)量.

(3)在(2)的條件下,從該樣本中完成年銷售任務(wù)的銷售點中隨機選取個,求這兩個銷售點不在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況.下列敘述中正確的是(

A.消耗1升汽油,乙車最多可行駛5千米

B.以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

C.甲車以80千米/小時的速度行駛1小時,消耗8升汽油

D.某城市機動車最高限速80千米/小時.相同條件下,在該市用乙車比用丙車更省油

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足a11 ,其中nN*

1設(shè),求證:數(shù)列{bn}是等差數(shù)列,并求出{an}的通項公式.

2設(shè),數(shù)列{cncn+2}的前n項和為Tn,是否存在正整數(shù)m,使得對于nN*,恒成立?若存在,求出m的最小值;若不存在,請說明.

查看答案和解析>>

同步練習冊答案