在使f(x)≥M成立的所有常數(shù)M中,把M的最大值叫做f(x)的“下確界”,例如f(x)=x2+2x≥M,則Mmin=-1,故-1是f(x)=x2+2x的下確界,那么
a2+b2
(a+b)2
(其中a,b∈R,且a,b不全為的0下確界是(  )
A、2
B、
1
2
C、4
D、
1
4
考點(diǎn):函數(shù)的最值及其幾何意義
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:由基本不等式整理出要求的算式中兩個(gè)量之間的關(guān)系,把整理的關(guān)系代入分式,進(jìn)行整理約分,得到
a2+b2
(a+b)2
的下確界.
解答: 解:∵a2+b2≥2ab=(a+b)2-(a2+b2),當(dāng)且僅當(dāng)a=b時(shí)區(qū)等號(hào),
∴a2+b2
(a+b)2
2
,
則對(duì)于不全為的0的實(shí)數(shù)a、b,
a2+b2
(a+b)2
(a+b)2
2
(a+b)2
=
1
2
,
∴函數(shù)的下確界是
1
2
,
故選:B.
點(diǎn)評(píng):本題考查函數(shù)的值域和基本不等式的應(yīng)用,解題的關(guān)鍵是求出函數(shù)的值域,本題是一個(gè)新定義問(wèn)題,注意理解所給的新定義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),f′(x)沒(méi)有零點(diǎn)且圖象是連續(xù)不斷的曲線,又f(x-2012)的圖象關(guān)于點(diǎn)(2012,0)對(duì)稱(chēng).若函數(shù)定義域內(nèi)的三個(gè)值a、b、c足(a+b)(b+c)>0,(a+b)(c+a)>0,則f(a)+f(b)+f(c)的值( 。
A、大于零B、小于零
C、等于零D、正負(fù)都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中,a2•a8=4a5,等差數(shù)列{bn}中,b4+b6=a5,則數(shù)列{bn}的前9項(xiàng)和S9等于(  )
A、9B、18C、36D、72

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)校有教師160人,其中有高級(jí)職稱(chēng)的32人,中級(jí)職稱(chēng)的56人,初級(jí)職稱(chēng)的72人.現(xiàn)抽取一個(gè)容量為20的樣本,用分層抽樣法抽取的中級(jí)職稱(chēng)的教師人數(shù)應(yīng)為(  )
A、4B、6C、7D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x>0,則“a=4“是“x+
a
x
≥4”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f(
x1
x2
)=f(x1)-f(x2),且當(dāng)0<x<1時(shí),f(x)>0.
(1)求f(1)的值;
(2)判斷f(x)的單調(diào)性;
(3)若f(3)=-1,求f(x)在[2,9]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|(x-2)[x-(3a+1)]<0},B={x|
x-2a
x-(a2+1)
≤0}.
(1)當(dāng)a=2時(shí),求A∩B;
(2)求使B⊆A的實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由y≤2及|x|≤y≤|x|+1圍成的幾何圖形的面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某次考試,滿分100分,按規(guī)定≥8者為良好,60≤x≤8者為及格,小于60者不及格,畫(huà)出當(dāng)輸入一個(gè)同學(xué)的成績(jī)時(shí),輸出這個(gè)同學(xué)屬于良好、及格還是不及格的程序框圖,并編寫(xiě)程序.

查看答案和解析>>

同步練習(xí)冊(cè)答案