18.已知雙曲線與橢圓$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{9}$=1共焦點(diǎn),且一條漸近線方程是y=-$\frac{\sqrt{3}}{2}$x,求此雙曲線方程.

分析 求出橢圓的焦點(diǎn)坐標(biāo),據(jù)雙曲線的系數(shù)滿足c2=a2+b2;雙曲線的漸近線的方程與系數(shù)的系數(shù)的關(guān)系列出方程組,求出a,b,寫出雙曲線方程.

解答 解:橢圓橢圓$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{9}$=1,其焦點(diǎn)坐標(biāo)為(0,±$\sqrt{7}$)
設(shè)雙曲線的方程為$\frac{{y}^{2}}{{a}^{2}}-\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)
∵橢圓與雙曲線共同的焦點(diǎn)
∴a2+b2=7①
∵一條漸近線方程是y=-$\frac{\sqrt{3}}{2}$x,
∴$\frac{a}$=$\frac{\sqrt{3}}{2}$②
解①②組成的方程組得a=2,b=$\sqrt{3}$
∴雙曲線方程為$\frac{{y}^{2}}{4}-\frac{{x}^{2}}{3}=1$.

點(diǎn)評(píng) 本題考查利用待定系數(shù)法求圓錐曲線的方程其中橢圓中三系數(shù)的關(guān)系是:a2=b2+c2;雙曲線中系數(shù)的關(guān)系是:c2=a2+b2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.有甲乙丙丁戊5艘艦艇,其中甲乙相鄰,甲丁不相鄰,這樣的排法有36種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=$\frac{1}{3}{x^3}+\frac{1}{2}a{x^2}$+bx+c在x1處取得極大值,在x2處取得極小值,滿足x1∈(-1,0),x2∈(0,1),則$\frac{a+2b+4}{a+2}$的取值范圍是(1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)經(jīng)過點(diǎn)($\sqrt{3}$,$\frac{1}{2}$),離心率為$\frac{\sqrt{3}}{2}$.
(Ⅰ)求C的方程;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),直線l與C相切于點(diǎn)T,且交兩坐標(biāo)軸的正半軸于A,B兩點(diǎn),求△AOB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x2+(a-4)x+3-a.
(1)若f(x)在區(qū)間[0,1]上不單調(diào),求a的取值范圍;
(2)若對(duì)于任意的a∈(0,4),存在x0∈[0,2],使得|f(x0)|≥t,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=2,an+1=Sn+2,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=n•an,求數(shù)列{an}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在三棱錐的四個(gè)面中,任兩個(gè)面的位置關(guān)系是( 。
A.相交B.平行C.異面D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知圓C:x2+y2-2x+4y=0,則通過原點(diǎn)且與圓C相切的直線方程為( 。
A.y=-2xB.y=-$\frac{1}{2}$xC.y=$\frac{1}{2}$xD.y=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.不等式$\frac{(2-x)(x-5)^{3}}{(x-1)(x-3)^{2}}$≥0的解集( 。
A.{x|x<1,或2≤x<3,或3<x≤5}B.{x|x≤-1,或2<x<5}
C.{x|-1<x≤2,或x>5}D.{x|x<-1,或x>5}

查看答案和解析>>

同步練習(xí)冊(cè)答案