分析 (1)n=1時(shí),a1=S1,當(dāng)n≥2時(shí),an=Sn-Sn-1即可得出.
(2)由(1)可知bn=$\frac{1}{2n•2(n+2)}$=$\frac{1}{8}(\frac{1}{n}-\frac{1}{n+2})$,利用“裂項(xiàng)求和”與“放縮法”即可得出.
解答 (1)解:n=1時(shí),a1=S1=2,
當(dāng)n≥2時(shí),an=Sn-Sn-1=n(n+1)-n(n-1)=2n,
經(jīng)檢驗(yàn)n=1時(shí)成立,
綜上可得:an=2n.
(2)證明:由(1)可知bn=$\frac{1}{{a}_{n}•{a}_{n+2}}$=$\frac{1}{2n•2(n+2)}$=$\frac{1}{8}(\frac{1}{n}-\frac{1}{n+2})$,
∴Tn=$\frac{1}{8}[(1-\frac{1}{3})+(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-1}-\frac{1}{n+1})+(\frac{1}{n}-\frac{1}{n+2})]$
=$\frac{1}{8}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$<$\frac{1}{8}×\frac{3}{2}$=$\frac{3}{16}$.
∴${T_n}<\frac{3}{16}$.
點(diǎn)評(píng) 本題考查了遞推式的應(yīng)用、“裂項(xiàng)求和”、“放縮法”,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\frac{9\sqrt{3}}{2}$ | D. | $\frac{2\sqrt{3}}{27}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (2,5) | B. | (-2,5) | C. | (5,-2) | D. | (5,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 甲 | B. | 乙 | C. | 甲、乙相等 | D. | 無(wú)法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 32 | B. | 36 | C. | 42 | D. | 52 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com