分析 (1)連接A1C交AC1 于O,則O為A1C的中點(diǎn),又D為BC的中點(diǎn),連接OD,則OD∥A1B,由三角形中位線定理可得OD∥A1B,再由線面平行的判定得A1B∥平面AC1D;然后利用等積法求三棱錐B-AC1D的體積;
(2)由(1)知,AD⊥平面BCC1B1,在平面BCC1B1中,過D作DM⊥DC1,交BB1于M,可得DM⊥平面AC1D,然后利用求解直角三角形得到M點(diǎn)位置.
解答 (1)證明:連接A1C交AC1 于O,則O為A1C的中點(diǎn),
又D為BC的中點(diǎn),連接OD,則OD∥A1B,
∵A1B?平面AC1D,OD?平面AC1D,
∴A1B∥平面AC1D.
由題意可知,AD⊥平面BCC1,
∵AB=AC=2,AB⊥AC,
∴AD=$\sqrt{2}$,又四邊形BCC1B1為長方形,且BB1=2,$BC=2\sqrt{2}$,
∴${S}_{△BD{C}_{1}}=\frac{1}{2}×\sqrt{2}×2=\sqrt{2}$,
∴${V}_{B-A{C}_{1}D}={V}_{A-BD{C}_{1}}=\frac{1}{3}×\sqrt{2}×\sqrt{2}=\frac{2}{3}$;
(2)解:由(1)知,AD⊥平面BCC1B1,在平面BCC1B1中,過D作DM⊥DC1,交BB1于M,
則DM⊥AD,∴DM⊥平面AC1D,
設(shè)BM=x,則B1M=2-x,
∴$D{M}^{2}+{C}_{1}{D}^{2}={C}_{1}{M}^{2}$,即x2+2+2+4=(2-x)2+8,解得:x=1.
∴在BB1上是否存在一點(diǎn)M,使得DM⊥平面AC1D,此時(shí)M為BB1的中點(diǎn).
點(diǎn)評(píng) 本題考查直線與平面垂直的判斷,考查了空間想象能力和思維能力,訓(xùn)練了利用等積法求多面體的體積,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,+∞) | B. | [1,8) | C. | (4,8) | D. | [4,8) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2 | C. | $\sqrt{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,x<sinx且x>tanx | B. | ?x∈R,x≥sinx或x≤tanx | ||
C. | ?x∈R,x<sinx或x>tanx | D. | ?x∈R,x≥sinx且x≤tanx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,2) | B. | (0,$\frac{1}{2}$) | C. | ($\frac{1}{2}$,2) | D. | (0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com