分析 (1)利用體積設(shè)出橢圓的方程,求出橢圓的幾何量即可.
(2)設(shè)出直線方程,聯(lián)立直線與橢圓方程的方程組,設(shè)出AB坐標,利用韋達定理結(jié)合弦長公式求直線的斜率,即可得到結(jié)果.
解答 解:(1)設(shè)橢圓方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,因為c=1,e=$\frac{c}{a}$=$\frac{1}{2}$,a=2,則b=$\sqrt{3}$.
所以橢圓方程為:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
(2)由題意可知直線l的斜率存在,設(shè)直線方程為:y=kx+1,
則由$\left\{{\begin{array}{l}{y=kx+1}\\{\frac{x^2}{4}+\frac{y^2}{3}=1}\end{array}}\right.$,得(3+4k2)x2+8kx-8=0,且△>0.
設(shè)A(x1,y1),B(x2,y2),
則$\left\{{\begin{array}{l}{{x_1}+{x_2}=\frac{-8k}{{3+4{k^2}}}}\\{{x_1}{x_2}=\frac{-8}{{3+4{k^2}}}}\end{array}}\right.$,
又$|AB|=\sqrt{1-{k^2}}|x-{x_1}|=\frac{{3\sqrt{5}}}{2}$,
得16k4-24k2-7=0,
解得${k^2}=\frac{1}{4}$,即$k=±\frac{1}{2}$.
所以直線l的方程為$y=±\frac{1}{2}x+1$,即x-2y+2=0或x+2y-2=0.
點評 本題考查橢圓方程的求法,直線與橢圓的位置關(guān)系的綜合應(yīng)用,考查轉(zhuǎn)化思想以及計算能力.
科目:高中數(shù)學(xué) 來源:2017屆河北滄州市高三9月聯(lián)考數(shù)學(xué)(理)試卷(解析版) 題型:選擇題
已知向量滿足,則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 40 | B. | 120 | C. | 100 | D. | 80 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | z沒有最大值,有最小值為-2 | B. | z的最大值為-$\frac{16}{5}$,沒有最小值 | ||
C. | z的最大值為-2,沒有最小值 | D. | z的最大值為$-\frac{16}{5}$,最小值為-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com